
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Design and Evaluation of a Collaborative
Approach for API Lifecycle Management

Duc Huy Bui

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Design and Evaluation of a Collaborative
Approach for API Lifecycle Management

Design und Evaluation eines kollaborativen
Ansatzes für API Lifecycle Management

Author: Duc Huy Bui
Supervisor: Prof. Dr. Florian Matthes
Advisor: M.Sc. Gloria Bondel
Submission Date: October 15, 2018

I confirm that this master’s thesis in information systems is my own work and I have
documented all sources and material used.

Munich, October 15, 2018 Duc Huy Bui

Acknowledgments

I would first like to thank my thesis advisor M.Sc. Gloria Bondel from the Department
of Informatics at the Technical University of Munich, Germany. In addition, I also want
to thank my second advisor M.Sc. Dennis Seidel from the industry partner. Both were
always open whenever I ran into a trouble spot or had a question about my research or
writing. I want to thank both for their helpful constructive feedback and steering me in
the right direction.

I also want to thank my supervisor Prof. Dr. Florian Matthes for providing me this thesis’
topic and the opportunity to write this thesis in cooperation with an industry partner.
Furthermore, I want to thank him for his valuable, constructive feedback and helpful
discussions.

I would also like to acknowledge M.Sc. Ömer Uludag who helped me to establish the
connection to the industry partner and without him, I would not have been able to conduct
this research in the current setup.

My further thanks goes to my colleague Dr. Matheus Hauder for giving me further useful
tips for my research. I am gratefully indebted to his very valuable comments on this
thesis.

Further gratitude is given to all industry experts and researchers who were involved in
the evaluation interview for this research project. Without their passionate participation
and input, the evaluation could not have been successfully conducted.

Finally, I must express my very profound gratitude to my family, my girlfriend and
my friends for providing me with unfailing support and continuous encouragement
throughout my years of study and through the process of researching and writing this
thesis. This accomplishment would not have been possible without them. Thank you.

Abstract

In recent years, Application Programming Interfaces (API) gained significantly high
attention from many companies. Companies discovered the emerging trend of the API
economy where they can monetize their APIs by giving users and partners access to
their back-end functionalities and data properties via APIs. By making APIs accessible
to external or partner consumers, companies are able to reach new markets, enable their
business strategy and drive the creation of new innovative solutions.

However, APIs are often not well designed or do not meet sufficient quality standards
which lead to missing business opportunities. Moreover, the API provider needs to include
external users more into the API development process, since collaboration is inherently
needed to scale the API program. For securing the competitive advantage, business
growth as well as the innovation potential of a company, API Management will play a
crucial role, especially the Full Lifecycle API Management.

The goal of this research is to find a way to assist the API Lifecycle process that is driven
by collaboration. Therefore this thesis proposes an approach to design and implement
a Collaborative API Lifecycle Management, in form of a prototypical web application
with chosen collaborative features as well as tools that accelerate workflows and secure
a successful, qualitative API development. Moreover, the whole thesis is conducted in
cooperation with an industry partner from the financial sector in Germany.

This thesis applies the design science framework from Hevner et al. 2004. The design
artifact of this thesis is the prototypical implementation of the Collaborative API Lifecycle
Management. This includes the collection of requirements from literature and expert
interviews to form a minor artifact which is a conceptual model for the API Lifecycle. The
design artifact is evaluated in form of a case study with expert interviews. The results
show that the prototype is a viable solution. The proposed acceleration approach helps
to increase the speed of the whole lifecycle process. The chosen collaboration features
are perceived positively. However, collaboration generally needs active commitment
otherwise the features have no use.

Keywords: API, API Economy, API Management, Full Lifecycle API Management,
API Lifecycle Management, API First, API Governance, Collaboration Engineering, Co-
Creation

iv

Contents

Abstract iv

List of Figures viii

List of Tables x

List of Abbreviations xi

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Statement . 2
1.3. Research Questions . 2
1.4. Research Approach . 4
1.5. Outline of this Thesis . 7

2. Foundations 8
2.1. API Fundamentals . 8
2.2. API Economy . 9

2.2.1. Key Terms . 9
2.2.2. API Value Chain . 9
2.2.3. API Types . 10

2.3. API Lifecycle Management . 11
2.3.1. Key Terms . 11
2.3.2. API First Design . 13
2.3.3. Comparison of Similar Lifecycle Approaches 14

2.4. Collaboration Engineering . 16
2.4.1. Key Terms . 16
2.4.2. Tool Classification . 17

3. Related Work 19

4. Conceptual Design 21
4.1. API Lifecycle Requirements . 21

4.1.1. Challenges from the Industry Partner 21

v

4.1.2. Success Factors as Requirements . 23
4.2. API Lifecycle Model . 28

4.2.1. Overview . 28
4.2.2. Layers . 30
4.2.3. Roles . 31
4.2.4. Artifacts . 32
4.2.5. Activities . 33

4.3. Collaboration Features . 35
4.4. System Design . 37

4.4.1. Use Case Diagram . 37
4.4.2. State Machine Diagram . 41
4.4.3. RBAC Model . 43
4.4.4. Data Model Diagram . 45

5. Prototypical Implementation 47
5.1. Architecture . 47
5.2. Technological Foundations . 49
5.3. Web Frontend . 50

5.3.1. Overview . 50
5.3.2. Major Views . 51

5.4. Backend . 58

6. Evaluation 62
6.1. Expert Interview Setting . 62
6.2. Interview Results . 64

6.2.1. System Usability Scale . 64
6.2.2. Open Qualitative Questions . 67

6.3. Concerns and Possible Enhancements of the Solution Design 69
6.3.1. General Technical and Conceptual Feedback 69
6.3.2. Feedback for the Home View . 70
6.3.3. Feedback for the Proposal Creation View 71
6.3.4. Feedback for the Proposal Overview View 71
6.3.5. Feedback for the Proposal Details View 72

6.4. Synthesis of Evaluation Results . 74

7. Conclusion 76
7.1. Summary . 76
7.2. Limitations . 78
7.3. Future Work . 78

Bibliography 80

vi

Appendices 86
A. Camunda . 86

A.1. BPMN . 86
A.2. CMMN . 88

B. Evaluation Questionnaire . 89

vii

List of Figures

1.1. Information Systems Research Framework with Thesis Contribution . . . 4

2.1. The API value chain (adapted from (De 2017)) 10
2.2. Code First Approach (Levin 2016) . 13
2.3. API First Approach (Levin 2016) . 14
2.4. The four Cs of collaboration (adapted from (Leimeister 2014)) 17

4.1. The vision of the overall full lifecycle API Management model and the
included model for Collaborative API Lifecycle Management (CALM) . . 29

4.2. A mock-up of the API Proposal Details View showing the chosen collabo-
ration features . 36

4.3. The use case diagram for the overall vision of the API portal 38
4.4. The use case diagram for the web application prototype 40
4.5. The activity flow of the first two stages of the web application prototype in

form of a state machine diagram . 41
4.6. The role hierarchy with role mapping between the CALM model and the

web application prototype . 43
4.7. The data model of the web application prototype 45

5.1. The overall architecture of the prototypical solution for Collaborative API
Lifecycle Management . 48

5.2. An extract from the prototype’s front-end documentation 51
5.3. An example of the prototype’s Home View 52
5.4. An example of the prototype’s Proposal Creation View 53
5.5. An example of the prototype’s Proposal Overview View 54
5.6. The Proposal Details View of the web application prototype 56
5.7. An example output from the API Specification Linter after uploading the

Swagger API Specification to the AWS S3 bucket file server 57
5.8. The Review System: Transition from sending an approval request to ap-

proving an API proposal . 57
5.8. The Review System: Transition from sending an approval request to ap-

proving an API proposal (Cont’d) . 58

viii

6.1. The overall approach of the case study including expert interviews 62
6.2. The 10 statements of SUS from (Brooke 1996) 65
6.3. The relationship between the SUS score and adjective ratings, acceptability

scores, and school grading scales (Bangor et al. 2009) 67

A.1. A BPMN approach for the prototype to support the Collaborative API
Lifecycle Management . 87

A.2. A CMMN approach for the prototype to support the Collaborative API
LIfecycle Management . 88

ix

List of Tables

2.1. The comparison of SDLC and ITSM (adapted from (Pollard et al. 2009)) . 15
2.2. Classification of collaboration tools along space and time (adapted from (Leimeis-

ter 2014)) . 18

4.1. The industry partner’s major challenges with services and APIs 22
4.2. The requirements for the Collaborative API Lifecycle Management model 24
4.2. The requirements for the Collaborative API Lifecycle Management model

(Cont’d) . 25
4.2. The requirements for the Collaborative API Lifecycle Management model

(Cont’d) . 26
4.3. The roles of the CALM model . 31
4.4. The artifacts of the CALM model . 32
4.5. The activities in each stage of the CALM model 34
4.6. The RBAC model for the web application prototype. 44

5.1. An overview about the technological support for each component of the
prototype’s architecture . 49

6.1. The chosen interview partners for the evaluation of the prototype 64
6.2. The SUS score results for scenario 1 (API Consumer) and 2 (API Provider) 66
6.3. A summary of the current prototype’s feedback acquired by expert interviews 75

x

List of Abbreviations

ADR Architectural Decision Record

API Application Programming Interface

BFF Backend for Frontend

BPM Business Process Management

BPMN Business Process Model and Notation

CALM Collaborative API Lifecycle Management

CD Continuous Delivery

CI Continuous Integration

CMMN Case Management Model and Notation

DSR Design Science Research

DX Developer Experience

EA Enterprise Architect

HTTP Hypertext Transfer Protocol

ITSM IT Servive Management

MEAN MongoDB ExpressJS Angular NodeJS

PDSA Plan Do Study Act

PoC Proof of Concept

xi

RBAC Role Based Access Control

REST Representational State Transfer

SCM Source Code Management

SDK Software Development Kit

SDLC Software Development Lifecycle

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SUS System Usability Scale

UX User Experience

xii

1. Introduction

1.1. Motivation

The idea behind Application Programming Interfaces (API) has been in science and indus-
try for many decades (Collins and Sisk 2015). The dissertation of Fielding 2000 marked
the beginning of today’s web APIs. Fielding 2000’s contribution set the fundamentals and
since then, numerous web APIs have been developed over the last decades. Today, APIs
and web APIs are treated as synonyms (De 2017). In fact, the last decade reveals that
firstly the number of APIs and secondly the usage of APIs have grown exponentially (Pro-
grammable Web 2018). Even though these statistical numbers are only visible for public
APIs, experts assume that the number of private APIs is much larger than the publicly
accessible ones (Jacobson et al. 2011; De 2017; Postman 2017).

Numerous businesses are slowly turning into a digital business and APIs already became
the basis for various companies in areas like Cloud Computing, Internet of Things (IoT)
and Big Data (W. Tan et al. 2016; CA Technologies 2015). With the new introduction of
the PSD2 law, Banks even had to provide APIs to allow other companies access to their
encapsulated data and services (Nordic Apis 2016; Brodsky and Oakes 2017). In fact, the
financial technology industry experienced also a high usage of APIs recently. Moreover,
companies discovered the emerging trend of the API Economy where companies treat
their APIs as a product and monetize them by giving users or partners access to their
back-end functionalities as well as data properties via the APIs. By making APIs accessible
to external or partner consumers, companies are able to reach new markets, enable their
business strategy and drive the creation of new innovative solutions (Iyengar et al. 2017;
Kepes 2014; Holly et al. 2014).

To constantly profit from the API economy, companies need to pay high attention to a
good API Management. API Management is „a crucial capability to navigate the digital
age“ (Iyengar et al. 2017). Part of the API Management is the API Lifecycle Management.
Generally, API Management sets the focus to the service side of an API, while the API
Lifecycle Management handles the product or rather technical side. However, traditional
API Management systems seem to treat API Lifecycle Management as a minor role. To

1

1. Introduction

have a successful API strategy in the API economy, it is important to give API Lifecycle
Management the same attention as to API Management. Therefore, a trend towards Full
Lifecycle API Management has been developed recently.

1.2. Problem Statement

Although there is a high potential on the API market, APIs still suffer from a variety of
issues. Firstly, APIs are often not well designed that lead to bad user experience (UX) or
rather developer experience (DX) (Bermbach and Wittern 2016; Smith 2018; Earls 2013;
Myers and Stylos 2016; Bermbach and Wittern 2016). Developers, using the APIs, wish
to have more documentation that is properly described to make the usage of the APIs
easier (Postman 2017).

Secondly, APIs need to be more consumer-driven. Many companies do not collaborate
with external users and provide a rather provider-driven API that does not fulfill the
consumer’s needs (Smith 2018). Generally, collaboration is inherently needed, in order to
scale an API program (Whitehead 2007; Vasudevan 2017). „The lack of an easy way for
stakeholders to quickly access the right APIs at the right time, while collaborating without
confusion on new API definitions, [. . .] [affects the] overall API delivery speed“ (Vasude-
van 2017).

Lastly, when developing for instance a mobile app, there are dependencies between front-
end and back-end developers teams which lead to longer development cycles for the whole
app. While the back-end team can implement the logic of a needed API, the front-end team
needs to wait until the API is ready and provided by the back-end counterpart (Rivero
et al. 2013).

1.3. Research Questions

In the following section, a set of research questions (RQ) are presented which are derived
from the previously described problem statement and guide this thesis throughout the
whole research.

RQ1: How could a holistic approach for an API Lifecycle, including phases, activities,
artifacts and roles, look like that is driven by the collaboration of participating stake-
holders?

2

1. Introduction

The aim of the first research question is to create a holistic lifecycle for APIs that builds the
target lifecycle model for the industry partner. The designed API Lifecycle should address
the challenges from literature, but also challenges which the industry partner has with
its current process for APIs. Moreover, the lifecycle should have a strong emphasis on
collaboration and agility. Before forming the conceptual model, requirements of the API
Lifecycle are collected by literature review and expert interviews. Subsequently, phases,
activities, artifacts and roles of the API Lifecycle model are collected in the same way as
the requirements. Based on the previously gained knowledge, the API Lifecycle model is
finally conceived as artifact of this research question.

RQ2: How can tools and collaborative features be used to support the API Lifecycle
Management?

To answer this question, a web application prototype is designed and implemented to assist
the different stakeholders during the first initial stages of the API Lifecycle, which was
conceptualized in RQ1. For that, the system design of the prototype is built and presented.
In addition, suitable collaboration features are chosen from a pool of possible collaboration
tools that are categorized by (Leimeister 2014) along space and time. The chosen features
are then included into the prototype to drive collaboration among the participating
stakeholders throughout the whole API Lifecycle. Besides the collaboration features,
supplementary features, accelerating the API Lifecycle Management, are introduced.

RQ3: What are the users’ experiences of the designed web application prototype solu-
tion?

The prototype is evaluated in form of a case study including multiple expert interviews.
For that, two scenarios with a sequence of activities are prepared. The first scenario covers
typical activities of the API consumer. This includes for example the creation of new API
proposals or searching for existing ones. Similarly, the second scenario covers activities of
the API provider side. Particularly, enterprise architects are the main focus in this scenario.
A typical assignment of an enterprise architect would be to approve or reject a proposal
which is based on the provided proposal details and pre-approvals from key decision
makers for project funding and governance conformity. After each scenario, the system
usability scale (SUS) evaluation method is applied. Lastly, the gained key findings and
limitations of the current web application prototype are summarized.

3

1. Introduction

1.4. Research Approach

The whole research approach of this thesis is based on the design science framework,
defined by (Hevner et al. 2004). Figure 1.1 provides an overview about the research
framework which was adapted to this thesis’ context. The framework provides guidelines
that this thesis systematically follows, in order to provide a solution for Collaborative
API Lifecycle Management. The goal of this framework is to provide an IT artifact that
is driven by a business need and fundamentally built on a rigorous knowledge base. As
illustrated in the design science model, the framework consists of three main parts which
are the environment, the information systems (IS) research and the knowledge base.

• Challenges for
developing qualitative
APIs
• Shortcomings of
current API process
• Need for central
solution to manage
APIs requests from
internal, partner or
external customers
• Etc.

Foundations on
• API Economy
• API Fundamentals
• API Lifecycle
Management
• Collaboration
Engineering

Related Work on
• Existing API Portals
• Current commercial
API Management
Tools

Design and Prototypical
Implementation of a

Collaborative API
Lifecycle Management

Web Application

Case Study including
Expert Interviews with

Industry Partner

Relevance RigorEnvironment IS Research Knowledge Base

Business
Needs

Applicable
Knowledge

Assess Refine

Application in the
Appropriate Environment

Additions to the
Knowledge Base

*Chapter 4
Chapter 6

Chapter 4

Chapter 5

Chapter 2

Chapter 3

Chapter 1

* Note that only section 4.1.1 adds challenges from the industry partner to the environment.

Figure 1.1.: Information Systems Research Framework with Thesis Contribution. Adapted
from (Hevner et al. 2004).

The environment describes the problem space which is composed of „people, (business)
organizations, and their existing or planned technologies“ (Hevner et al. 2004). The
environment defines a business need that people in an organization perceive. People
consider this business need as crucial to perform certain tasks and reach defined goals
effectively as well as efficiently. It influences the IS research, in order to achieve relevance

4

1. Introduction

between the IS research and the given environment. In this thesis, chapter 1 describes the
general problem space and subsection 4.1.1 in chapter 4 adds further challenges from the
industry partner to the environment.

The knowledge base includes foundations, methodologies and related research. It provides
the fundamental knowledge to build the IT artifact and fulfill the business need in the
given environment. Rigor is achieved by applying the knowledge appropriately. The
knowledge base for this thesis is covered by chapter 2 and 3.

The IS research is divided into two phases which are complementary to each other. The
first phase is the „Develop/Build“ phase and the second one is the „Justify/Evaluate“
phase. The heart of the whole design science framework is to conceptualize and develop
an IT artifact via the „Develop/Build“ phase which is afterwards evaluated via the
„Justify/Evaluate“ phase by applying the IT artifact in the given environment, in order
to satisfy the business need. The feedback gained from the evaluation is used on the one
hand to improve the IT artifact, but also on the other hand to reshape the knowledge base.
This assessment and refinement cycle is ideally done in several iterations. Due to the time
constraint of six months for this master’s thesis, the assessment and refinement cycle in
this thesis is only performed once. In this thesis, chapter 4 and 5 provide the IT artifact in
the „Develop/Build“ phase. Chapter 6 performs the evaluation of the IT artifact in the
„Justify/Evaluate“ phase and presents the results.

As recommended by (Hevner et al. 2004), this thesis follows the seven guidelines for
conducting effective design-science research:

Guideline 1: Design as an Artifact In this thesis, a collaborative approach for API Lifecy-
cle Management is designed and developed. Specifically, this Collaborative API Lifecycle
Management addresses the business need in the industry partner’s business environment.
As outlined in chapter 5, a corresponding prototype with its implementation details is
introduced. This prototype builds the main design artifact in the sense of the design
science research. It is considered as viable artifact in form of an instantiation and serves
moreover as proof of concept.

Guideline 2: Problem Relevance The environment in this thesis includes general chal-
lenges from literature review about providing qualitative APIs which fit to the user’s
needs. There is a need to collaborate between API consumer and provider, in order to
form more consumer-driven APIs. The details to the problems are described in section 1.2.
Further challenges are collected in form of expert interviews with the industry partner.
The results are summarized in subsection 4.1.1.

5

1. Introduction

Guideline 3: Design Evaluation Chapter 6 describes the evaluation approach as well
as the results. In general, the evaluation approach consists of a case study, including
expert interviews. The validation of the IT artifact is conducted only in one iteration,
due to the time constraint of six months for this thesis. The evaluation uses the SUS
evaluation method, developed by (Brooke 1996). Particularly, SUS focuses on the usability
of the design artifact which inherently includes properties like effectiveness, efficiency
and satisfaction. As elaborated in section 4.2, a scenario is created for both API consumer
and API provider which is afterwards evaluated by the interviewee with the standardized
SUS questionnaire. After conducting the scenarios, further open questions are asked to
gain general feedback and pinpoint limitations of the current solution approach.

Guideline 4: Research Contributions The first major contribution of this thesis consists of
the conceptual model and the requirements for a collaborative approach for API Lifecycle
Management which are amplified in section 4.1 and 4.2. Specifically, the conceptual
model is derived from the foundations, related research and expert interviews to meet the
requirements. The conceptual model is adapted to the industry partner’s needs and is not
to be considered as a generic model, applicable to different companies. Another major
contribution is the prototypical implementation to support the Collaborative API Lifecycle
Management. This prototype inherently serves a proof of concept, while its evaluation
results gives insights into the usability of the current prototype and the utility of the whole
designed solution approach.

Guideline 5: Research Rigor The foundations and related research are outlined in chap-
ter 2 and 3. Built on the gained knowledge base and further researched requirements, a
conceptual model for Collaborative API Lifecycle Management is derived. Furthermore,
collaborative features are analyzed and appropriate ones are selected for the respective
prototype. The evaluation results of the IT artifact highlight possible enhancement aspects
not only in the usability of the prototype’s user interface (UI), but also in the foundations
and the conceptional design. As a result, the gained evaluation feedback can be used for
future research.

Guideline 6: Design as a Search Process As already mentioned in this section, there is
only one iteration of the assessment and refinement cycle between building and evaluating
the IT artifact. Nevertheless, the results from the evaluation help to redesign both the
conceptual model and the prototypical implementation. Moreover, it highlights limitations
of the current solution and points out further future research. A summary of all key
findings are concluded in the last chapter of this thesis (cf. chapter 7).

Guideline 7: Communication of Research The general approach and the key findings of
this master’s thesis are presented in two presentations, during the graduation seminar of
the sebis chair from Technical University of Munich (TUM), Germany.

6

1. Introduction

1.5. Outline of this Thesis

As illustrated in Figure 1.1, each step of the design science framework, defined by Hevner
et al. 2004, is described in at least one chapter of this thesis. Additionally, the following
section provides a short insight into each chapter:

Chapter 1: Introduction motivates the thesis and describes the addressed problem space.
Furthermore, the research questions and the research approach are elaborated.

Chapter 2: Foundations provides a theoretical basis for this thesis. This chapter covers
important terms and concepts, including API Fundamentals, API Economy, API Lifecycle
Management, including API Management, and Collaboration Engineering.

Chapter 3: Related Work gives an overview about related research in the area of API
Management and API Lifecycle Management. Since the current academic literature in this
research area is sparse, mainly related research from industry is presented. This includes
existing API Portals from other companies and other commercial API Management tools.

Chapter 4: Conceptual Design amplifies different aspects of the design of a Collaborative
API Lifecycle Management prototype. This chapter covers the requirements of a concep-
tual model for Collaborative API Lifecycle Management and also presents the result of
the designed model. The requirements contain additional challenges from the industry
partner, from which most of the challenges are addressed by the conceptual API Lifecyle
Management model. Chosen collaboration features, which are included into the prototype,
are introduced. Moreover, the system design of the prototype is elaborated which includes
an use case diagram, a role-based access control (RBAC) model, a data model and the
overall activity flow for the first initial stages as a state machine diagram.

Chapter 5: Prototypical Implementation presents the realized prototype. This chapter
gives an overview about the used technologies and lays out possible alternatives. The
overall architecture is presented, followed by a description of each single component of
the front-end as well as back-end.

Chapter 6: Evaluation provides the evaluation goal, the evaluation approach and the
feedback gained by expert interviews. Moreover, possible enhancements for the prototype
are proposed.

Chapter 7: Conclusion summarizes the results of the research questions and concentrates
on the key findings achieved in this thesis. Besides, limitations and future work are
highlighted.

7

2. Foundations

The following chapter provides the knowledge base in the sense of Hevner et al. 2004. It
presents an overview of important terms, concepts, and methodologies used in this thesis.
Based on the knowledge base, the design artifact, a prototypical solution for Collaborative
API Lifecycle Management, is designed and implemented. To begin with, the API funda-
mentals are presented which builds the essential basis to understand subsequent concepts.
After that, an insight is given into API Economy and API Lifecycle Management. Finally,
the concepts of Collaboration Engineering are introduced.

2.1. API Fundamentals

An API and a web service are closely related to each other. In fact, people still mix up
the two terms and use them interchangeably. Even though both may seem to follow the
same purpose, yet both still show different characteristics. To distinct both terms, they are
explained in the following.

In general, API is the abbreviation for application programming interface. An API can
be technically described as „a way for two computer applications to talk to each other
over a network [. . .] using a common language that they both understand“ (Jacobson et al.
2011). The communication over a network is performed without any user interaction (De
2017). The network does not have to be via the web. However, if the web is used as the
network, then the API is also called Web API (De 2017). In this thesis, the terms API and
Web API are used as synonyms. The purpose of an API is to expose data or functions
to be used in other applications (De 2017; Masse 2012). A typical example is the Google
Maps API. The Google Maps API provides geographical data that can be accessed by
developers via an API and used inside the developer’s mobile app. Another point is
that APIs build a contract (Fremantle et al. 2015; Jacobson et al. 2011; Souza et al. 2004).
Ideally, this means that API are reliable which increases usage. In addition, good APIs are
documented, consistent, and predictable (Jacobson et al. 2011).

8

2. Foundations

A web service is „a software system designed to support interoperable machine-to-
machine interaction over a network“ (W3C 2018). „A Web API is the face of a web
service, directly listening and responding to client requests.“ (Masse 2012). De 2017 even
mentions that a web API is a subset of web services. Web services are typically based
on the communication protocol SOAP, while web APIs are based on REST (De 2017;
W3C 2018; Spichale 2017). SOAP makes data available as services while REST makes
data available as resources (Patni 2017; Vester 2017). There are also other protocols for
APIs which include GraphQL, RPC, etc. All of them have advantages and disadvantages.
Nevertheless, REST is currently the most used one in the industry.

2.2. API Economy

After having the basic idea what an API does, the following section gives a brief insight
into the API economy which has gained high attention by many companies over the last
years. Firstly, the term itself is introduced. Secondly, the API value chain is presented and
lastly the API types are amplified.

2.2.1. Key Terms

Overall, there is no universal definition for the term API Economy in the current literature.
The general idea of the API economy can be described as „the commercial exchange of
business functions, capabilities, or competencies as services using web APIs“ (Holly et al.
2014). The API has shifted from a mere „development technique to a business model
driver“ (Collins and Sisk 2015). APIs can be considered as a product and offered to other
users who makes use of APIs to create new business opportunities. Moreover, companies
can monetize the locked up data and services via APIs which at the end provides the
company a new revenue stream (Vukovic et al. 2016). Typical business models include
subscription, license, freemium, or pay-as-you-go (Vukovic et al. 2016; Jacobson et al.
2011).

2.2.2. API Value Chain

The API economy creates value for a number of different actors along the API value chain.
Figure 2.1 shows how an asset can be transformed into a value for the end users.

9

2. Foundations

Asset APIApp

!
End User

!
API Consumer

"
API Provider

Figure 2.1.: The API value chain (adapted from (De 2017))

The API value chain starts with a business asset which can be information, a product or a
service (Jacobson et al. 2011). The API provider exposes this asset via an API and offers it
to API consumers. The API consumer, who equals to a developer, uses this API to build
for instance a new mobile app. This mobile app is finally used by the end user. Value
is provided to „the owner of the assets, the publisher of the API, or the developers who
created the applications“ (Jacobson et al. 2011).

All in all, all key stakeholders in the API value chain need to be fully involved and
committed to create strong links and have a successful API strategy (Jacobson et al. 2011;
De 2017). API strategies often fail due to weak links in the API value chain (Jacobson et al.
2011).

2.2.3. API Types

There are several ways to divide APIs into categories (Brodsky and Oakes 2017; De 2017;
Jacobson et al. 2011; Morgan et al. 2016). The majority of authors suggests that APIs can
be divided into two big groups which are public and private APIs. The private APIs can
be further divided into internal and partner APIs. Overall, an API may fit into several
categories.

Internal APIs are used merely within the company and are not accessible to the public.
They help to „improve organizational agility, efficiency, and effectiveness“ (Morgan et al.
2016).

Partner APIs enable „highly customized integration with selected business partners, cus-
tomers, and other stakeholders, typically within the context of specific business processes
and relationships“ (Morgan et al. 2016).

Public APIs are accessible by anyone and is used to „expand market reach through
openness and innovation“ (Morgan et al. 2016). They help to create new business ideas
and reduce development costs (De 2017).

10

2. Foundations

At first glance, public APIs seem to contribute most to the API economy. In fact, the private
APIs are the actual driving force in the API economy (De 2017; Jacobson et al. 2011). Most
public APIs started as a private one first and later became open to all developers.

2.3. API Lifecycle Management

To constantly profit from the API economy, a company requires a well planned API Man-
agement which also includes a good API Lifecycle Management. This coming section,
starts with introducing the basic terms like API Management and API Lifecycle Manage-
ment. Subsequently, an insight into the API First design is provided. Finally, a comparison
of similar lifecycle approaches is given.

2.3.1. Key Terms

Currently only a few academic research about API Management has been published.
Hence, there is no universal definition for the term API Management. Spichale 2017
describes API Management as all technical, economic and strategic aspects that are needed
to operate APIs for a company or a service. API Management is often represented as
a platform that „helps an organization publish APIs to internal, partner, and external
developers to unlock the unique potential of their assets“ (De 2017). API Management
offers a variety of capabilities (Patni 2017; Fremantle et al. 2015; Spichale 2017), but De
2017 reduces the capabilities to four groups:

• Developer Enablement for APIs

• Secure, Reliable and Flexible Communications

• API Lifecycle Management

• API Auditing, Logging and Analytics

These capabilities are offered in an API Management platform as three major types of
services (De 2017; Stafford 2018):

1. API Gateway service

2. Analytics service

11

2. Foundations

3. Developer portal

The API gateway service allows to create and manage APIs. They add functions to
APIs which include „security, traffic management, interface translation, orchestration,
and routing capabilities“ (De 2017). The analytics service monitors traffic, operational
metrics, API performance, and developer engagement metrics (De 2017). The developer
portal is the single entrance point for developers. Functions include „app registration and
onboarding, API documentation, community management, and API monetization“ (De
2017).

The previously described characteristics apply only to traditional API Management sys-
tems. Stafford 2018 mentions that the traditional API Management shifts towards Full
Lifecycle API Management. In general, this means that traditional tools gave lower at-
tention to the API lifecycle. The API Lifecycle kept playing a minor role and needs to
get higher attention now. Researchers discovered that companies do not have a formal
lifecycle management. Therefore, it is necessary to shift to Full Lifecycle API Management
which allows to control the API workflow. The major services offered by the traditional
API Management systems is extended and results into the following (Stafford 2018):

1. API Design

2. API Implementation

3. API Testing

4. API Gateway service

5. Analytics service

6. Developer portal

Every company has its own lifecycle for APIs. Hence there is also no universal definition
for the term API Lifecycle Management. Generally, API Lifecycle Management „pro-
vides the capability to control how an API is developed and released to consumers“ (De
2017). Basic functions include API Creation, API publication, change notification, version
management, issue management, API deprecation and retirement (De 2017; Patni 2017).

12

2. Foundations

2.3.2. API First Design

Companies often start with creating the product itself like for instance a mobile app or
web application. They treat APIs as an integration tool to glue third party systems and
services together which are then used to support the back-end functionality of the actual
product. This results into several customized, artificial APIs that are not properly built,
tested and do not contribute to reusability. However, the goal in the API economy is to
create APIs which developers can benefit from and which can be reused for more than
one application.

An alternative approach that has been present in the industry for some years is API First.
API First „is a strategy in which the first order of business is to develop an API that puts
your target developer’s interests first and then build the product on top of it [. . .]“ (Levin
2016). Common practice is to create an API specification as a Swagger file, the OpenAPI
Standard, and define the details of the endpoints, including request and response formats.
Using the API specification as basis, the actual product can be implemented afterwards.

Figure 2.2 shows the order of steps in the Code First approach. The Code First approach
starts with developing the back-end service logic which is followed by the API creation.
After the API has been implemented, the front-end team can start to implement the actual
product’s visual representation. It can be clearly seen that there is a dependency between
the development teams. There is also no space for parallelism. This way of development
is also called synchronous development (Levin 2016).

Figure 2.2.: Code First Approach (Levin 2016)

13

2. Foundations

The Code First approach leads to longer development cycles, whereas the API First
approach allows for parallelism to develop the parts of the product faster. As shown
in Figure 2.3, the parallelism is achieved by mocking the API specification to separate
front-end and back-end teams (Rivero et al. 2013). After that, the back-end functionality
and the front-end of the product can be implemented at the same time. Both back-end and
front-end team are collaborating based on the API mock.

Figure 2.3.: API First Approach (Levin 2016)

2.3.3. Comparison of Similar Lifecycle Approaches

By comparing existing API Lifecycles from literature and current industry leaders (Mal-
inverno and O’Neill 2018; Malinverno and O’Neill 2016), it can be seen that there is no
standardized one and that every company has its own lifecycle model for APIs (Apigee
2016a; Ravichandran et al. 2016; Patni 2017; CA Technologies 2015; Vester 2017). There are
API Lifecycle models which only consider the API provider angle and there are others
which have a combined API consumer and provider perspective.

Because of the characteristics of an API, the API Lifecycle might have similarities with the
IT service management (ITSM) lifecycle and the software development lifecycle (SDLC).
Both lifecycles are further analyzed. Table 2.1 shows the comparison of the SDLC and
the ITSM. It can be seen that the SDLC focuses more on the product, while the ITSM

14

2. Foundations

concentrates on the service. Similar parts of both lifecycles are also visible in an API
Lifecycle. Hence, an API Lifecycle has both a product and a service focus. At first, an API
Lifecycle includes the development of the actual product which is an API. Furthermore,
the API Lifecycle provides additional services like operating the API to give consumers
access to the product. Compared to the SDLC, the API Lifecycle creates a product, but it
stays with the API provider. Therefore, the API Lifecycle needs to consider end-to-end
business services.

Table 2.1.: The comparison of SDLC and ITSM (adapted from (Pollard et al. 2009))

Product Focus (SDLC) Service Focus (ITSM)

Planning

Negotiate scope based on function Negotiate scope based on end-to-end busi-
ness process

Internally (IT) focused Customer focused
IT jargon Business jargon

Requirements Modeling

„Over the wall“ mindset Stakeholder involvement
Technology insights Business metrics
Automate function once and move on Automate service once reuse service in

different ways
Focus on inputs and outputs Focus on business needs and process

Design

Capture logic of business function Model business rules and external rela-
tionships

Focus on IT artifact Focus on end-to-end business services

Construction

Create a software product Increase focus on value-added portions of
applications

Buy, build or lease Buy, build, lease and INTEGRATE

Deployment

Technology driven Minimum impact on business services
Test technology Test service environment
Train on technology Train in business service/process

Support

Maintain hardware/software/networks Continual service improvement

The comparison of further lifecycles from the area of SOA governance (Schepers et al. 2008)
and service management (Fischbach et al. 2013; Kohlborn et al. 2009) with the API Lifecycle
leads to the conclusion that all lifecycles can be reduced to the Deming Cycle which is also
called the Plan-Do-Study-Act (PDSA) cycle (The W. Edwards Deming Institute 2018). The

15

2. Foundations

stages of all the lifecycles can be allocated to one of the PDSA cycle. The only difference is
that an API Lifecycle includes stages with API-specific activities. The naming of the stages
are similar to other lifecycles.

2.4. Collaboration Engineering

Software Engineering normally includes a variety of people with different roles. All of
them have different tasks and responsibilities, but all achieve one common goal together.
Hence, collaboration is inherently part of software engineering. The following section
gives an overview about the concepts of collaboration engineering. At first, important
terms related to collaboration are introduced which is followed by a classification of
collaboration tools.

2.4.1. Key Terms

Collaboration and cooperation are two common words that are used by people inter-
changeably. In fact, both terms are not synonyms. Collaboration reflects an umbrella
term and is further divided into communication, coordination and cooperation. Leimeis-
ter 2014 presents the relationship of all four terms and describes it as the „four Cs of
collaboration“, shown in Figure 2.4.

The lower half shows the triangular relationship between communication, coordination
and cooperation. This constellation is often referred to as the „3C collaboration model“
and builds the basis for collaboration. The first basic term is Communication and can be
defined as „the interrelated behavior of two or more people and their interaction with the
goal of transmitting information and understanding the content.“ (Leimeister 2014).

The next basic term related to collaboration is coordination. Coordination can be described
as „the matching of decentralized actions and decisions of interdependent organizational
units on the basis of suitable communication processes with regard to the optimal fulfill-
ment of the goals. [. . .] Coordinated systems can work in parallel and are uninfluenced by
each other“ (Leimeister 2014). Communication is used for coordination. All coordinated
actions are independent from each other and no common medium is needed.

The last basic term is cooperation. Cooperation can be defined as „the activity of two or
more individuals, which is consciously planned and coordinated with one another to en-
sure the achievement of the goals of each individual involved to the same extent“ (Leimeis-
ter 2014). Compared to coordination, cooperation needs a common medium to work.

16

2. Foundations

Communication

Coordination Cooperation

Collaboration

+ Group Focus
Group Goal

Group Process

Figure 2.4.: The four Cs of collaboration (adapted from (Leimeister 2014))

All three terms are closely related to collaboration. As already mentioned, cooperation
and coordination are often used as synonyms. However, as depicted in the „4Cs of
Collaboration“ model, it can be seen that collaboration pays special attention to the group
focus. Communication, coordination and cooperation concentrate on interactions of single
actors, whereas collaboration focuses on fulfilling the group goal. To achieve the group
goal, the group process needs to be considered. In general, Collaboration can be described
as two or more individuals working on a common medium to fulfill a common goal, and
in order to reach this goal communication, coordination and cooperation of the involved
actors are necessary (Leimeister 2014).

2.4.2. Tool Classification

To simplify collaboration, there are a variety of collaboration tools that can be used online
and offline. A collaboration tool depends on the interacting people if they collaborate at
the same place or different places and also if they collaborate at the same time or different
times. The combination creates a space-time-matrix with four classification dimensions
which is depicted in Table 2.2.

The first dimension requires that collaboration happens at the same time and at the same
place. This means that a group of people could be located in the same meeting room. All

17

2. Foundations

used tools in that room are then treated also as collaboration tools. Further suitable tools
are for instance presentation tools like a flip chart or shared editor tools like tabletops.

Table 2.2.: Classification of collaboration tools along space and time (adapted
from (Leimeister 2014))

Same Time (Synchronous) Different Time (Asynchronous)

1st Dimension 3rd Dimension
Brainstorming Tool Message Board
Whiteboard Common Work Room
Flip Chart Answering Machine
Voting Tool Adhesive Labels
Overhead Projector
Data Projector
Tabletop

Same Place

Pin Board

2nd Dimension 4th Dimension
Instant Messaging System E-mail
File Transfer Tool Newsgroup
Phone Bulletin Board
VoIP System Web Blog
Desktop/Application Sharing Tool Wiki

Video Streaming Platform
Shared File Repository
Social Tagging

Different Place

Voting Tool

The second dimension covers all tools that requires people to collaborate at the same time,
but at different places. A typical example is when people work in different cities, but need
to collaborate together to a certain time. Common tools include conversation tools like
instant messaging or desktop sharing tools.

The third dimension includes tools that are helpful for people working at different times,
but at the same place. Generally, this dimension covers only a few tools and people often
concentrate more on the other dimensions (Leimeister 2014). Suitable tools cover for
instance a message board or adhesive labels like post-it notes.

Finally, the last fourth dimension covers tools for collaborating at different times and
different places. Those tools give the most flexibility and includes the most collaboration
tools, compared to the other dimensions. This dimension includes both a variety of online
as well as offline tools. Common tools for this dimension are conversation tools like email,
bulletin boards or weblog. Further tools include presentation tools and voting tools.

18

3. Related Work

The current academic literature about API Management and API Lifecycle Management is
sparse at this point in time. However, the industry has seen the potential of APIs early and
is actively participating on the API market. A decent number of white papers has been
published by leading industry players about API Management. Since the goal of the design
artifact is to support a full lifecycle API Management, the prototypical implementation of
the design artifact can be treated as an API portal that brings API consumer and provider
to one central place. In the following, existing API portals and a few commercial tools
in the area of API Management and API Lifecycle Management are presented as related
research.

Daimler 2018 owns an API portal that holds a few number of APIs about cars. The APIs
can be tested by subscribing them and getting an access token. On the portal are different
ways to contact the provider for example a form and an email address. The form can be
used to request changes or a new API. A documentation and a pricing list is also displayed
on the portal.

Nasa 2018 provides an API portal about space related topics. The portal shows how to
subscribe to existing APIs. The subscription requires the API consumer to fill out a contact
form. Generally, the API portal offers only Open APIs which are all publicly accessible to
all API consumers. There is no pricing for the usage. In fact, developers can contribute to
the API portal by offering own APIs to the company.

Google 2018 offers Apigee as an API Management tool that claims to support the Full
Lifecycle API Management. By trying out the API Management tool, it can be seen that
the company offers a variety of typical API Management characteristics like developer
enablement, analytics and security features. However, it seems that Apigee sets a focus
more on the service side which means that API are published and its usage is tracked for
optimization. There is neither a way for automation of the development environment nor
any collaboration support.

Smartbear 2018 offers also API Management tools. Most of the tools focus on the au-
tomation of the development environment which is also based on an API Specification.

19

3. Related Work

Collaboration along the development is also supported. However, the company focus only
on the technical side. The full lifecycle for APIs is not considered, only a part is covered.

All in all, the presented API portals and API Management tools cover only parts of a
Full Lifecycle API Management. Most of the tools do not support collaboration along the
whole lifecycle. There are tools that automate the development environment and provide
some collaboration features like a form and email for contacting. Nevertheless, a complete
end-to-end service seems not to be given by any existing company at the current point in
time. In addition, not all the existing API Lifecycle Management tools have a product and
service focus at the same time.

20

4. Conceptual Design

After acquiring the foundations and related work for this thesis, the subsequent step in
the DSR is to build the design artifact which uses the business need and the acquired
knowledge base as an input. Before creating the actual design-artifact, a conceptual
model and the system design of the IT artifact need to be prepared. In order to form the
conceptual model for API Lifecycle Management, requirements from literature as well
as expert interviews are collected. In combination with further expert interviews and
the research foundations, the actual lifecycle model is designed. In addition, the chosen
collaboration tools are presented and the IT artifact’s system design are elaborated.

4.1. API Lifecycle Requirements

To form the fundament of the conceptual model for API Lifecycle Management, require-
ments are collected and presented in this coming section. At first, challenges from the
industry partner are elaborated which are then followed by introducing success factors
from similar or existing API Lifecycle approaches in literature.

4.1.1. Challenges from the Industry Partner

By interviewing two enterprise architects from the industry partner, a number of major
challenges could be identified that currently hinder a successful service and API delivery
to internal and external customers. The major challenges are summarized in Table 4.1. The
following section briefly describes each challenge individually.

The first challenge C1 addresses the problem about status updates of projects. A project
normally consists of a lot of different roles. Each role is responsible for a part of the
project. Due to the high number of interacting people, collaboration is inherently needed.
Therefore, it is crucial that all people need to be informed about the current project status
or at least, the project members are able to get the missing information instantly by
themselves. However, the industry partner mentions that it is currently difficult to align

21

4. Conceptual Design

Table 4.1.: The industry partner’s major challenges with services and APIs

Major Challenge

C1 Difficulties to align all project participants on the same status of an API
C2 Unnecessary longer and indirect communication ways
C3 Neither traceability nor transparency with classical communication ways like phone

or email
C4 Break in collaboration among project members
C5 External API customers have no contact point to request a new API
C6 High manual paperwork for use of non-optimized API process
C7 Existing tools are cumbersome and difficult to use
C8 Customer not involved into the whole process and cannot provide early feedback

all project members. The only way to be informed is to personally attend meetings or wait
until someone creates a report. Generally, a person is not able to get the status instantly.

The next challenge C2 deals with ineffective communication ways. Currently, a developer
in a project is not able to contact the customer directly. The industry partner states that
the company is divided into domains. To transmit messages from the developer to the
customer, a domain architect or a similar role need to be used as a „broker“. This means
customers generally do not exchange communication with developers directly.

Challenge C3 describes the disadvantages of traditional communication ways. In gen-
eral, the industry partner still uses traditional communication ways like phone or email.
Those communication ways are still needed and cannot be replaced by anything else yet.
Nevertheless, without additional communication ways, it is difficult to trace changes
and to match the information to the right projects. The industry partner mentions that
transparency is generally missing.

The challenge C4 identifies that sometimes there are breaks in the collaboration process.
One of the interviewed enterprise architect adds that at first, a service or API is designed by
a design team and confirmed with the governance committee of the company. Afterwards,
the service or API is implemented by another team. At the end, the architect is not able
to match design and implementation together, since project work evolves over time and
naturally adapts to changes which are not covered by the delivered documentation.

Another problem is addressed by challenge C5. Generally, if an external customer would
like to have an API from the industry partner, the customer normally would not know,
how he could contact the company. The only way is currently through the customer’s
own business network.

22

4. Conceptual Design

In challenge C6, the industry partner states that there is no API-specific process at the
moment. The industry partner uses an existing generic process for the internal API
development. That process is nevertheless not optimized for APIs and requires lots of
manual paperwork. One interviewed architect even adds that there is generally no process
that can be used for APIs, requested by external customers.

Challenge C7 describes the difficulties with existing tools. The industry partner mentions
that there are some tools available to manage the API development process. Although
statuses of the projects can be tracked in form of excel files, the current tool support is
overall considered as cumbersome and time-consuming.

The last challenge C8 relates to the development process of services and APIs itself.
Normally, a customer is not directly involved into the service or API development. Hence,
the customer does not have the chance to provide early feedback and is only able to see the
end result. In fact, this might lead to late change requests by the customer which would
automatically lead to longer development cycles.

4.1.2. Success Factors as Requirements

Besides the challenges from the industry partner, further requirements from literature
for the Collaborative API Lifecycle Management model are collected and consolidated.
For that, (critical) success factors from existing API Lifecycles and similar lifecycle ap-
proaches are retrieved. The success factors are also discussed with the industry partner
to confirm their suitability. Success factors can be described as „those few key areas that
must be payed special and continual attention to guarantee managerial or organizational
success“ (Zhang et al. 2013). In total, four areas for lifecycles are considered which have
its source mainly in academic literature, but also in white papers, published by leading
industry players in the area of API Management and API Lifecycle Management. The
leading industry players are identified with the help of the magic quadrant for Full Life
Cycle API Management by (Malinverno and O’Neill 2018; Malinverno and O’Neill 2016).
The examined areas cover the following:

1. API Management and API Lifecycle Management

2. Product Development Lifecycle

3. Service Management Lifecycle

4. Agile Software Development Lifecycle

23

4. Conceptual Design

The product development lifecycle is chosen, due to the fact that APIs can also be treated
as individual products. Besides, an API has strong similarities to a service and is also more
or less a piece of software. Because of that, success factors from the service management
lifecycle and the software development lifecycle are included into the requirements re-
search. Table 4.2 shows the consolidated results for collecting API Lifecycle Management
requirements. Generally, the success factors are chosen based on some criteria. If a success
factor is from a literature source about API Lifecycle Management or API Management,
then it is automatically included into the requirements list. In case of other examined
areas, further criteria are considered:

• Is the success factor one of the top ones in the examined area?

• Is the success factor applicable to other lifecycles?

• Is the success factor realizable?

• Is the success factor mentioned by multiple literature sources?

• Is the success factor applicable to existing API Lifecycles of leading industry players
in the area of API Management or API Lifecycle Management?

The collected requirements can be divided into four categories, which are business, or-
ganizational, process and technical requirements. In the following, the requirements are
briefly described.

Table 4.2.: The requirements for the Collaborative API Lifecycle Management model

Requirement Source

Business Requirements

R01 Strategy and process alignment (Mulesoft 2014; Zhang et al. 2013)
R02 Provide easy access for users (Mulesoft 2014; Apigee 2016a)
R03 Achieve stickiness of ecosystems and project

champion
(Mulesoft 2014; Vukovic et al. 2016;

W.-G. Tan et al. 2009)
R04 Clear business strategy, goals and objectives (Mulesoft 2014; Cooper and Klein-

schmidt 1995; W.-G. Tan et al. 2009)
R05 Adapt to enterprise’s level of digital maturity (Vukovic et al. 2016)
R06 Suitable market environment (González and Palacios 2002;

Cooper and Kleinschmidt 1995)
R07 Delivery strategy (Apigee 2016a; Chow and Cao 2008)

24

4. Conceptual Design

Table 4.2.: The requirements for the Collaborative API Lifecycle Management model
(Cont’d)

Requirement Source

R08 Short development time and short time-to-
market

(González and Palacios 2002;
Cooper and Kleinschmidt 1995)

Organizational Requirements

R09 Top management support (González and Palacios 2002;
Zhang et al. 2013; Cooper and Klein-
schmidt 1995; W.-G. Tan et al. 2009)

R10 Support for agile team, flexible processes and
change management

(Zhang et al. 2013; Chow and Cao
2008; Apigee 2016a)

R11 Clear project roles (Zhang et al. 2013)
R12 High quality of team capabilities and team

synergies
(Cooper and Kleinschmidt 1995;

Chow and Cao 2008; W.-G. Tan et
al. 2009)

Process Requirements

R13 Interdepartmental cooperation and commu-
nication

(González and Palacios 2002;
Cooper and Kleinschmidt 1995;
W.-G. Tan et al. 2009)

R14 Alignment of design and requirements (Zhang et al. 2013)
R15 Service Level Management (Zhang et al. 2013)
R16 Project Management (Zhang et al. 2013; Chow and Cao

2008; W.-G. Tan et al. 2009)
R17 Governance support (Apigee 2016a; W.-G. Tan et al.

2009)
R18 Divide process into stages (Zhang et al. 2013)
R19 Customer involvement into the process (González and Palacios 2002; Chow

and Cao 2008)

Technical Requirements

R20 Design for user experience (UX) and devel-
oper experience (DX)

(Mulesoft 2014; Apigee 2016a)

R21 Provide reusability of product (Vukovic et al. 2016)
R22 Support continuous integration and continu-

ous improvement
(Vukovic et al. 2016; Zhang et al.

2013; Apigee 2016a)
R23 Ensure security (Vukovic et al. 2016; Apigee 2016a)
R24 High product and service quality (Vukovic et al. 2016; González and

Palacios 2002)

25

4. Conceptual Design

Table 4.2.: The requirements for the Collaborative API Lifecycle Management model
(Cont’d)

Requirement Source

R25 Drive end-to-end visibility (Apigee 2016a; Zhang et al. 2013)
R26 Interactive documentation with self-service

capabilities
(Apigee 2016a)

The business requirements focus on strategical factors. In general, a company should
always set a clear goal and scope for its business and API strategy (R01, R04). Another
important point is that companies need to adapt to different maturity levels (R05). There
are companies who are already longer on the API market than others and hence, are more
experienced. A company, who just started with API experimentation, need to carefully
adapt its strategy to its own maturity level (Vukovic et al. 2016). Related to this, is also
the API delivery strategy (R07). Companies need to think about a suitable way to deliver
its APIs to the API consumers. For instance, Apigee 2016a suggests to use a layered API
delivery strategy which „abstracts the underlying complexities and dependencies of APIs
and [. . .] accelerates [the] delivery [. . .]“ (Apigee 2016a). Furthermore, it is important to
find the right market segment from which the company can profit the most (R06). This
generally includes that the products need to be delivered fast on the market, because
„early product introduction improves profitability [. . .] and allowing development and
manufacturing cost advantages“ (González and Palacios 2002) (R08). Another requirement
is to build a community, since API Management recommends that APIs should be listed
in a catalogue for easy access (R02). This catalogue is often in form of an API portal which
has self-service capabilities and aims to keep API consumers interested in the offered
products and services. This can be also described as to „stick“ API consumers inside the
API ecosystem of the company (R03).

The second group of requirements deals with organizational factors or rather with people.
For a successful API strategy it is important that managers need to be included into the
process (R09). Early and constant input from managers help to succeed the overall API
Lifecycle process. Besides, there should be clearly defined roles and the company should
invest into their employees’ skills (R11, R12). This automatically includes that teams need
to be agile and adaptable to the factor „change“ (R10).

A further group of requirements concentrates on the process for a lifecycle itself. It is
common that lifecycles should be divided into stages to reduce complexity and to be able
to efficiently organize the process (R18). The process should pay attention to SLAs, project
management and governance support, in order to ensure quality and consistency (R15,

26

4. Conceptual Design

R16, R17). Generally, „there should be no distinction between [. . .] APIs“ (Apigee 2016a)
with regard to their visibility and discoverability (Apigee 2016a). Another requirement for
the API Lifecycle is that it needs to support collaboration to achieve alignment between
different parts of the lifecycle process (R13, R14). This particularly includes that customers
have to be involved into the lifecycle to get early feedback and adapt to occurring changes
(R19).

The last set of requirements addresses technical factors. Firstly, APIs should be designed
in a way to be reusable and easily consumable by API consumers (R20, R21). This
inherently includes that the API design needs to achieve good developer experience (DX).
The word „developer experience“ is derived from UX. However, compared to UX, DX
not only covers a good user interface experience, but also an appropriate and efficient
use of the product or service itself (Fagerholm and Munch 2012). Often related to DX
is the developer portal which provides an interactive documentation with self-service
capabilities to developers (R26). In general, a portal provides the advantage to serve
customers through one single entrance point. A further technical requirement aims at
overall high product and service quality (R24). This includes the usage of agile tools
like CI/CD for continuous improvement (R22). More importantly, the company needs
to ensure security (R23). When developers for example deploy APIs in the public cloud
and „neglect to deploy common API security standards or consistent global policies, they
expose the enterprise to potential security breaches“ (Apigee 2016a). The last missing
requirement addresses the overall transparency of the lifecycle (R25). It is important to
analyze performance bottlenecks as well as to measure usage and adoption of the APIs, in
order to continuously improve the company’s service.

27

4. Conceptual Design

4.2. API Lifecycle Model

The previously presented requirements build the basis for constructing the conceptual
model. The coming section presents the resulted Collaborative API Lifecycle Management
model that is formed with the help of academic literature, the foundations of this thesis
and further expert interviews with the industry partner. To begin with, an overview
about the designed conceptual model is given which is followed by a description of single
components like the layers, the roles, the artifacts and the activities.

4.2.1. Overview

Overall, the designed conceptual model for Collaborative API Lifecycle Management has
both a service focus as well as a product focus. Figure 4.1 illustrates the Collaborative API
Lifecycle Management model, included into the envisioned Full Lifecycle API Manage-
ment ecosystem. The left side of that presented model depicts an inflow of customers who
need an API. The customers can be distinguished between internal employee, partner
or external user. Depending on the type of customer, the respective API type (internal,
partner, external API) is defined. The need of the customer for an API goes through the
CALM model which is located in the center of the ecosystem. The CALM model produces
the requested API which then can be used by the customer or rather API consumer to
build new innovative businesses. New innovative businesses could be a mobile app, a
web app or other areas, as shown in the outflow of the ecosystem.

As shown in the ecosystem, the core of that model is presented in the center which is
the API Lifecycle Management. Generally, the API Lifecycle Management is depicted
in the innermost layer as a blue box. Belonging to the CALM model are several layers
which surround the API Lifecycle Management and provide guidance for the lifecycle.
Furthermore, the CALM model consists of a variety of involving people, created artifacts
and activities performed by the different roles in the single stages of the API Lifecycle.
The following sections break the CALM model into its single components and describe
the details.

28

4.
C

onceptualD
esign

GOALS & STRATEGY
Business Strategy API Strategy API Types API Business Model

API Adoption
API M

aturity Level
Scaling

LEAN GOVERNANCE & ENABLEMENT
Guidelines Standards Policies Architectural Decision Records

Auditing
API C

om
m

unity
API Platform

API LIFECYCLE MANAGEMENT

ArtifactQuality Gate
!

Phase
!

Role (Group/Team)
"

Role (Single)

"
Management

"
API Business

Owner

!
API Governance

Commitee

"
API Architect

"
Enterprise
Architect

!
API Governance

Commitee

"
API Consumer

!
Security

Team

!
API Ops

Team

!
API Dev

Team

"
API Product

Owner

"
API Architect

"
Business
Analyst

"
API Business

Owner

"
Enterprise
Architect

!
API Governance

Commitee

"
API Program

Manager

#

Ops
Playbook

$
Business Value

Report

$

API Analytics
Report

"
API Portal

w/ Documentation

%

Security Test
Results

&

Working
API

'

Source
Code

(

Domain
Model

)

API Mock
Sandbox

*

API Proxy

API Contract
w/ Specification

$

Decision
Report

$

(Contract)
Proposal

!

!

!

!!

!

!

!

"

!

!

!

! "

"

!

!

"

"

!

"

"

"

"

"

!"

"

!

"

"
"

Retire-
ment

Opera-
tions

Analytics
Deploy-

ment

Security

Dev &
Test

Design

Analysis

C
on

tin
uo

us
Re

po
rti

ng

C
ontinuous

Im
provem

ent

API

Mobile Apps

+

Web Apps

,

Big Data

-

Social

*

Cloud

.

New Innovative
Digital Businesses

/

Internal
Employee

0

Partner

1

External
User

!

Figure 4.1.: The vision of the overall full lifecycle API Management model and the included model for Collaborative API Lifecycle
Management (CALM)

29

4. Conceptual Design

4.2.2. Layers

The CALM model includes in total three layers. The outermost layer defines the goals and
strategy of the API provider. This layer ensures the direction and leads the API provider to
its goals. As shown in the layer, there are several factors that need to be paid attention to.
One factor is that the company needs to define its API strategy. This API strategy needs to
align with the business strategy to achieve highest business value. Related to the strategy
is the focus on the API types. Generally, it should be a mix out of public and private APIs
to gain the most potential on the API market. Another factor to be considered, is the API
business model. The API provider needs to adopt the right model for monetizing its APIs
and to be successful in the API economy. Common business models that are currently
applied on the market are freemium or pay-per-use (Iyengar et al. 2017). Overall, the
ultimate goal of an API provider is to achieve high API adoption by API consumers. To
achieve that goal, the API provider needs to constantly optimize its API Management.
This includes to be aware of the maturity level of the API programs and further, how to
scale the API business to provide a variety of APIs and satisfy the different needs of API
consumers.

The next inner layer deals with governance and enablement. To offer a variety of APIs,
they need to be managed in some central place. A common way is to develop an API
platform which is often represented as the API portal. A typical API portal offers API
consumers the facility for self-service, including developer onboarding, app registrations
and API documentation (De 2017). With the help of the API portal, it is also possible
to create a community of API consumers. The better the experience in the portal with
APIS, the more likely more API consumers will adopt them. To ensure consistency in
terms of API visibility and discoverability, governance need to be introduced. Since too
much governance limits API consumers and too less governance hinders API reusabil-
ity, the CALM model considers only the most needed governance regulations which
is also termed as lean governance. Besides basic governance elements like providing
guidelines, standards and policies, architectural decision records (ADR) should be also
included. ADRs document the decisions for the usage of a certain technology or tool.
The company ThoughtWorks proposes a model which is known as Technology Radar to
visualize ADRs and allocate a certain technology to a specific adoption level in the circular
radar model (Parsons et al. 2017). All the governance elements should be accessible to
API consumers and providers when designing and developing the API. Furthermore,
automatic governance test mechanisms need to be introduced for auditing and secure
consistency.

The last layer is represented by the API Lifecycle Management and depicted in the center
of the CALM model. The API Lifecycle consists of different stages. It starts with the

30

4. Conceptual Design

Analysis stage, goes clockwise until it ends with the Retirement stage. Each stage includes
a number of interacting people and various artifact. The roles collaborating in a stage can
be seen by matching the color of the roles next to the stage to the ones on the left side
of the API Lifecycle Management layer. After each phase there are quality gates which
are function as checkpoints. The quality gates ensure that before a stage switches to the
next one, it fulfills a list of quality standards. By that, the quality of the API programs
is ensured over the whole lifecycle. Another point to be mentioned is that once an API
reaches a certain stage, it does not mean that activities from previous stages cannot be
performed again. In fact, the whole lifecycle is considered as flexible and agile to achieve
continuous improvement. The stage of an API only reflects the latest one, in which the
API performs activities initially. Further details to the roles, artifacts and activities are
examined in the coming sections.

4.2.3. Roles

In each layer of the CALM model, there are several roles involved. Each role collaborates
with other roles in that layer to realize a part of the whole API Lifecycle. A role can
interact in multiple layers and can make decisions about layer-specific topics that was
presented in the previous section. Most of the roles are located in the innermost layer, the
API Lifecycle Management. Besides the different roles belonging to the API provider, the
API consumer is also involved along the whole end-to-end lifecycle for an API. Table 4.3
gives an overview about the responsibilities and functions of each role. Most of the
shown information is retrieved from (De 2017; Ravichandran et al. 2016) and additionally
confirmed with the industry partner. It should be noted that further roles can be included
into the lifecycle. However, the current version of the CALM model covers only the
necessary ones and those who are expected by the requirements.

Table 4.3.: The roles of the CALM model

Role Description

Management Leads the company towards the API strategy
API Governance Committee „Ensures that the process is followed, criteria are met,

and quality is maintained“ (De 2017)
Enterprise Architect Responsible for governance related topics, screening and

reviewing API proposals
API Business Owner „Responsible for establishing and validating the business

needs of the API and the requirements for approval of
funding“ (De 2017)

31

4. Conceptual Design

Table 4.3.: The roles of the CALM model (Cont’d)

Role Description

API Program Manager „Responsible for the overall program delivery of the
APIs“ (De 2017)

API Architect „Responsible for the technical architecture of the API
solution“ (De 2017)

Business Analyst „Gathers the business requirements for API enablement
and identifying the services to be exposed as APIs“ (De
2017)

API Product Owner „Responsible for interfacing with various API delivery
teams to ensure the quality and delivery of the APIs“ (De
2017)

API Dev Team Responsible for the overall API delivery, including de-
sign, development and testing of the API

API Ops Team Responsible for the deployment of API, monitoring ana-
lytical metrics (adoption, usage, performance, etc.), de-
veloper onboarding and resolving issues of the API

Security Team Responsible for the security of API and performs pene-
tration tests before deploying APIs into production

API Consumer Uses the API for own apps or other new innovative busi-
nesses

4.2.4. Artifacts

Along the whole lifecycle, a number of artifacts are created within or at the end of a stage.
The artifacts can have different purposes. There are artifacts which record and document
decisions, provides updates about the stage’s status or are just used as inputs for further
artifacts, resulted in subsequent stages. Table 4.4 summarizes each artifact’s importance in
the API Lifecycle.

Table 4.4.: The artifacts of the CALM model

Stage Artifact Description

Analysis (Contract) Proposal Contains the details of an API like name,
description, pricing, SLAs, files, etc.

Decision Report Records and documents the decision for
choosing a proposal

32

4. Conceptual Design

Table 4.4.: The artifacts of the CALM model (Cont’d)

Stage Artifact Description

Design Domain Model Builds the basis for creating APIs e.g. in
form of micro services

API Mock Sandbox Adds dummy values to mock an API
based on a provided specification

API Proxy Used in connection with the API mock
and functions as communication middle
layer between front-end and back-end

API Contract with API Speci-
fication

Represents the actual contract containing
the requirements, design, API specifica-
tion, etc. before implementing the logic

Dev&Test Source Code Represents the logic of an API

Working API Represents the API end product

Security Security Test Results Informs about vulnerabilities before API
can be deployed in production

Deployment API Portal with Documenta-
tion

Puts the API and its documentation into
the API Portal

Analytics API Analytics Report Reports adoption metrics, performance
metrics or other analytical KPIs for im-
provement and monitoring the status

Operations Business Value Report Informs about the overall monetization
results of all API programs

Ops Playbook Represents the „technical instructions“ to
maintain the deployed API

Retirement - -

4.2.5. Activities

Various activities are performed in each stage by the different roles of the API provider
and the API consumer. Table 4.5 gives an overview about possible activities inside a
certain stage. The activities result from expert interviews, own industry experience and
literature sources like De 2017. The shown activities are not complete and show a first set
of possible actions. The shown activities reflect the API provider perspective.

33

4. Conceptual Design

Table 4.5.: The activities in each stage of the CALM model

Stage Activity

Analysis Submit API proposal by API consumer (new API request, change request)
Define of quality and governance requirements for API e.g. SLA, NFRs
Analyze API proposal (business alignment, feasibility)
Get two step approval for API (governance and funding)
Define team roles for API programs

Design Get governance requirements for API (standards, guidelines, policies, cod-
ing conventions, etc.)
Conceptualize granular design of API with API consumer (data model, API
specification, etc.)
Generate DevOps environment automatically (repository, unit tests, docu-
mentation, API gateway, API proxy, API mock, etc.)

Dev&Test Implement business logic of API
Test business logic of API with real data (unit test, integration test, etc.)

Security Perform critical security test (penetration test, load test, performance test,
authentication and authorization test, etc.)

Deployment Deploy production-ready API
Publish documentation to API portal
Get approval for legal requirements
Get approval for marketing requirements (monetization, corporate design,
etc.)

Analytics Define API metrics to be monitored e.g. health status, traffic consumption,
traffic spikes, performance, API adoption, etc.

Operations Provide maintenance and solve issues (bug fixing, logic improvements,
etc.)
Manage API monetization, developer onboarding, API scaling

Retirement Manage change notifications (deprecation, retirement)
Disable subscription of deprecated and retired APIs

34

4. Conceptual Design

4.3. Collaboration Features

Since collaboration plays an important role in the CALM model, the following section
describes the chosen features for the design artifact. Collaboration generally enables to
align and synchronize all participants in the API Lifecycle. It helps API consumer and
provider to efficiently and effectively work together on one common medium and to
reach a common goal. This common medium is an API proposal. The idea is that all new
requested APIs are organized in proposals. All related information to an API is grouped
at one place.

As described in section 2.4.2 and shown in Table 2.2, there are four dimensions for collabo-
ration tools. For the design artifact, the 4th dimension contains the most suitable tools for
the prototype. To achieve flexibility, it is important to choose tools that neither limit the
place nor the time. For the prototype, a voting system and commenting system is chosen.
In addition, API mocking is added. Figure 5.3 shows a mock-up for the API Proposal
Details View with the collaboration features.

The voting system creates awareness. It helps to include the outside-in-thinking concept,
since all proposals are currently visible to all users of the system. The more people vote
for an API proposal, the more the importance and need on the current market. This makes
the screening of proposals easier for the API provider.

The commenting system follows the concept of a web blog. The API proposal which
equals to the web blog is extended by a commenting system. This is especially useful for
exchanging communication and cooperation between API consumer and provider.

The last collaboration feature is API mocking. While the two previous features are directly
or indirectly listed in the collaboration tool classification as depicted in Table 2.2, the
API mocking feature is not. However, API mocking enforces collaboration in the API
context. Since API First is used for the design artifact, API mocking can be included into
the prototype. Based on the specified details of an provided API specification, a mock for
the described API can be generated which enables API consumer and provider to work
independently. API provider can implement the logic of the API, while the API consumer
can use the API with dummy values to integrate it into the his own business like a mobile
app, web app or others. Whenever the API specification is updated, both parties can be
notified. Combined with further technical tools, this feature helps to synchronize API
consumer and provider easier.

35

4. Conceptual Design

Figure 4.2.: A mock-up of the API Proposal Details View showing the chosen collaboration
features: (1) Voting System, (2) API Mock, (3) Commenting System

36

4. Conceptual Design

4.4. System Design

To technically support the CALM model, a design artifact in form of an instantiation is
needed. In agreement with the industry partner, the current prototype version covers
only the first two stages from the conceptual model as proof of concept. Before the IT
artifact can be implemented, the software design needs to be prepared first. Therefore,
the following section starts with an overview about use cases for the overall API portal
and for the current version of web application prototype. Subsequently, the activity flow
for the first two stages is presented as a general process overview. Furthermore, the
role-based access control (RBAC) model and the data model for the prototypical solution
are introduced.

4.4.1. Use Case Diagram

Several use cases for the envisioned API portal are identified. The use cases are mainly
derived from the CALM model. Figure 4.3 depicts a use case diagram for the overall
vision for the API portal.

The use case diagram covers a number of various actors who are potential users of the
API portal. The actors reflect the same roles as the ones from the CALM model. They
can be divided into two groups which are API consumers and API providers. While
the left side of the use case diagram shows API consumers, the right side of the use
case diagram shows API providers. An API consumer can be an external user, a partner
or an internal employee. The API provider side only includes roles like API program
manager, enterprise architect, API architect, API product owner, API development team,
API operations team and security team. Not all roles from the lifecycle model for APIs are
active users of the envisioned portal.

The center of the use case diagram shows the CALM prototype as subsystem with sev-
eral use cases depicted as bubbles. In general, the use cases can be grouped into eight
key functionalities. The key functionalities are depicted on the top left of the use case
diagram and include project management, proposal management, API subscription man-
agement, governance management, DevOps management, security, analytics and version
management.

The first functionality covers project management features. The general idea of that
functionality is that with the help of the API portal, it should be possible to get an overview
of all APIs in development and to trace each API program’s progress individually. Also, a
feature for automated report generation should be included into the API portal to record

37

4. Conceptual Design

<< Subsystem >>
CALM Web Portal

Security
Team

API Ops
Team

API
Provider

API Dev
Team

Enterprise
Architect

API
Consumer

API
Product
Owner

Submit Proposal

View/Update
Proposal

Validate Specification in
Proposal

<< include >>

Provide
API Proxy

Partner

Internal
Employee

<< extend >>

View / Update
Documentation

Provide
Documentation

<< extend >>

View Governance
Requirements

View API
Analytics

Manage API
Versions

Monitor API
Metrics

<< include >>

Support Auditing

<< extend >>

Provide Sandbox
Environment

User Notification

<< include >>

Condition:
{API updated,

deprecated or retired}

API
Program
Manager

<< include >>

View Status of all
API ProgramsChange Request

Proposal
New API
Proposal

Generate
Analytics Reports

<< extend >>

View Security
Test Results

Define SLA
Requirements

Generate
Decision Reports

Personal Tasklist

Submit API for
Security Check

Setup API DevOps
Environment

Search for an
existing API

Subscribe to
existing API

<< extend >>

KEY FUNCTIONALITIES

 Project Management

 Proposal Management

 API Subscription Management

 Governance Management

 DevOps Management

 Security

 Analytics

 Version Management

1

2

3

4

5

6

7

8

1

2

2

2

3

3

4

4

5

5

5

5

5

6

6

1

7

7
7

7

8

8

2

2

Get Approval from
Decision Makers

1

1

Collaborate on
Proposal

<< include >>

2

API
Architect

External
User

Figure 4.3.: The use case diagram for the overall vision of the API portal

38

4. Conceptual Design

decisions. Furthermore, during the lifecycle of an API, several approvals from decision
makers need to be requested. This could include decisions for instance about funding,
governance conformity, marketing and legal factors. A personal task list is another minor
feature which intents to assign tasks to certain people or group of people.

The collaboration of API consumer and provider is based on one common medium. This
medium is an API proposal. Because of that, several features for the proposal management
are planned. The proposal management includes submitting, viewing and updating API
proposals. Also, further collaboration features beside the ones presented in 4.3 help to
form the proposal details. In addition, API proposals can be attached with files like an API
specification. To validate the API specification, a linter feature is included to syntactically
check for violations against guidelines, proposed by the API provider.

Once some APIs are deployed and ready to be used by API consumers, the API Portal
needs to provide users the possibility to subscribe to APIs. The subscription would
generate tokens for the consumers to access and consume the APIs. Furthermore, users
should be able to search and filter for existing APIs by certain criteria. Those features are
grouped into the API subscription management functionality.

The governance management functionality groups features to guarantee the consistency
of APIs. The API portal needs to set governance mechanisms along the API Lifecycle
process to ensure quality of the products and services. For that, API consumers should
be able to define SLAs. Furthermore, both API consumer and provider can view the
company’s governance guidelines inside the API portal which for example helps them to
define the API specification.

Besides, the DevOps management functionality targets the support of the API portal with
development tools. In fact, the API portal aims at an automated approach for setting up
the development environment which covers elements like an API documentation, API
mock, CI/CD, repository or further features.

The following two functionalities deals with security and analytics related features. Before
an API can be deployed live into production, it needs to go through several security checks.
A possible use case would be to include the security test results into the API portal to make
them visible to API consumers and providers. After an API went live into production, the
service should be continuously improved. For that, several analytics features support the
monitoring of the API performances and also their adoption by the API consumers.

The last functionality is the version management. The main goal of that functionality is to
manage the different versions of an API. Furthermore, whenever a new version is about
to be deployed, the API consumers should get a notification. In general, all consumers

39

4. Conceptual Design

should be informed about any changes not only in production-ready APIs, but also in API
proposals.

The design artifact in form of a web application prototype does not include all presented
use cases from Figure 4.3. Only a set of use cases is extracted for the prototypical imple-
mentation. The use cases that need to be realized are depicted in Figure 4.4.

<< Subsystem >>
CALM Web Portal Prototype

API Ops
Team

API
Provider

API Dev
Team

Enterprise
Architect

API
Product
Owner

Submit Proposal

View/Update
Proposal

Validate Specification in
Proposal

<< include >>

Provide
API Proxy

<< extend >>

View / Update
Documentation

Provide
Documentation

<< extend >>

Provide Sandbox
Environment

API
Program
Manager

<< include >>

View Status of all
API Programs

New API
Proposal

Define SLA
Requirements

Setup API DevOps
Environment

KEY FUNCTIONALITIES

 Project Management

 Proposal Management

 Governance Management

 DevOps Management

1

2

4

5

2

2

2

4

5

5

5

5

5

2

Get Approval from
Decision Makers

1

1

Collaborate on
Proposal

<< include >>
2

API
Architect

API
ConsumerPartner

Internal
Employee

External
User

Figure 4.4.: The use case diagram for the web application prototype

40

4. Conceptual Design

4.4.2. State Machine Diagram

To understand the overall activity flow in the first two lifecycle stages Analysis and Design,
the following section explains the chain of actions in form of a state machine diagram. The
state machine diagram is illustrated in Figure 4.5. The lifecycle stages are displayed in
parallel to show the transition point between the Analysis and the Design stage, depicted
by a vertical dashed line.

Proposal
Submitted

Proposal Approval
Requested

Proposal
Approved

Proposal
Rejected

Proposal Project
Generated

send
approval
request

review
proposal

[approve]

[reject]

generate
project

Analysis Design

!
API Consumer

!
Enterprise
Architect

!
API Consumer

!
API Consumer

!
Enterprise
Architect

"
Dev Team

Figure 4.5.: The activity flow of the first two stages of the web application prototype in
form of a state machine diagram

In general, the prototypical solution supports the CALM model with collaboration features
and an acceleration approach. As described in section 4.3, the prototype uses a comment-
ing system and a voting system. The commenting system can be used throughout the
whole lifecycle, whereas the voting system is mainly used at the beginning. Furthermore,
an API mock is used not only to strengthen collaboration, but also to accelerate the process.
The API mock separates dependencies between API provider and API consumer. To
enable the API mock, an API First approach is needed. This includes the preparation of an
API specification.

As already mentioned, API proposals build the common medium on which API provider
and API consumer can collaborate with each other. While the API provider is shown
on top of the state machine diagram, the API consumer is shown below. The process
starts with the API consumer who submits an API proposal with its details like API name,
description and pricing. In addition, he can optionally attach files to the proposal like an
API specification or other related files.

After receiving the API proposal, the API provider side, represented by an enterprise
architect, screens through the API proposal and checks, if it aligns with the API provider’s

41

4. Conceptual Design

interests. To include the outside-in-thinking, all submitted proposals are publicly visible
to all users of the web application prototype. With the help of the voting system, all users
can indicate their interest in a certain API. If a proposal holds a big amount of supporters,
then it will catch the attention by the API provider easier. In case of a positive interest
from the API provider side, the EA would send an approval request for a proposal.

This particular step sends two approval requests to two different decision makers. On
the one hand, the API governance committee approves for the general alignment with
the API provider’s strategy. On the other hand, an API business owner approves for a
positive funding of the API program development. Simultaneously, API consumer and
provider iterate over the API proposal’s details and form a valid API specification that is
included into the API proposal. To ensure that an API proposal is valid, linting tools are
used to syntactically check for governance violations.

Once an EA receives two positive approvals and he assess that the current details of the
API proposal are sufficient, he would mark the proposal as approved. Subsequently, the
API proposal is automatically prepared for the next stage which include the automated
generation of the development environment (repository, CI/CD, API documentation, API
mock, etc.). At the same time, the EA checks the results of the generated project and hands
it over to the next team members. Accordingly, if the EA receives at least one rejection
decision, he marks the proposal as rejected and the proposal will be archived.

42

4. Conceptual Design

4.4.3. RBAC Model

Since the CALM model includes various roles, it is necessary to define access control
rights and permissions for the people with different activities to ensure security. For that,
the RBAC’96 model, described by (Sandhu 1998), is applied. In general, the RBAC’96
model differentiates between users, roles and permissions. With regard to the prototypical
solution, a user equals to a human being, a role to a job function and a permission to a
„particular mode of access to one or more objects in the system“ (Sandhu 1998). The brief
idea of that model is to map users to roles and roles to permissions. For instance, a user
can belong to certain roles which have certain permissions. In the case of the prototype, a
user belongs exactly to only one role. Furthermore, within users can be a role hierarchy.
Figure 4.6 shows the role hierarchy model for the prototypical solution.

Administrator

Manager

Producer

User

Visitor

Au
th

en
tic

at
ed

N
ot

 A
ut

he
nt

ic
at

ed

(API Program Manager)

(Enterprise Architect)

(API Architect, Product Owner, Development Team,
Operations Team)

(API Consumer)

(API Consumer)

Roles in Web Portal Roles in API Lifecycle

Figure 4.6.: The role hierarchy with role mapping between the CALM model and the web
application prototype

The role hierarchy model contains five user roles. The roles from the CALM model can
be mapped to a respective one in the prototype. The user role with the most „impacted“
permissions is depicted at the top. The impact of the permission rights for the roles lowers
gradually from top to down. Besides, the user roles can be separated into authenticated
and non-authenticated ones. Non-authenticated roles equal to having no registered

43

4. Conceptual Design

account in the web application prototype. The only non-authenticated role is the Visitor.
The remaining ones, including Administrator, Manager, Producer and User, belong to the
authenticated category.

Besides the presented role hierarchy model, a matrix showing the mapping of activity
permissions to the user roles is illustrated in Table 4.6. The current prototype version
considers in total 14 permissions. Most of the permissions are self-explaining, except for P1
and P2. In case of P1 and P2, the overall idea is that users with a Visitor role can only see
non-sensitive information of the API proposals like API name and description, whereas
the remaining roles can mostly see all information, including pricing and the company
proposing the API. In addition, a user with a User role can only see all information about
an API proposal, if he submitted the proposal by himself which equally means to be the
owner of the proposal.

Table 4.6.: The RBAC model for the web application prototype. (R: Role, P: Permission)

P1
:V

ie
w

A
PI

Pr
op

os
al

(P
ar

ts
)

P2
:V

ie
w

A
PI

Pr
op

os
al

(F
ul

l)

P3
:C

re
at

e
A

PI
Pr

op
os

al

P4
:U

pd
at

e
A

PI
Pr

op
os

al

P5
:D

el
et

e
A

PI
Pr

op
os

al

P6
:C

om
m

en
tA

PI
Pr

op
os

al

P7
:V

ot
e

A
PI

Pr
op

os
al

P8
:S

ha
re

A
PI

Pr
op

os
al

P9
:G

et
A

pp
ro

va
lf

or
A

PI
Pr

op
os

al

P1
0:

R
ev

ie
w

Pr
op

os
al

P1
1:

V
ie

w
SL

A

P1
2:

M
an

ip
ul

at
e

(C
re

at
e,

U
pd

at
e,

D
el

et
e)

SL
A

P1
3:

V
ie

w
St

at
us

of
al

lA
PI

s

P1
4:

V
ie

w
Sa

nd
bo

x/
A

PI
Pr

ox
y

R1: Visitor x x x x x
R2: User x x* x x* x x x x* x* x x
R3: Producer x x x‡ x x x x x‡ x x
R4: Manager x x x‡ x† x x x x† x† x x‡ x x
R5: Administrator x x x x x x x x x x x x x

*Role must be owner of the proposal
†Role must have the same domain as the proposal
‡Role must be owner of the proposal or must have the same domain as the proposal

44

4. Conceptual Design

4.4.4. Data Model Diagram

In the following, a brief introduction into the data model is given. As shown in Figure 4.7,
the data model can be grouped into four areas, including web application, source code
management (SCM), CI/CD and file server.

Continuous Integration
and Continuous Delivery

Proposal

apiName: String
company: String
timeline: String
pricing: Number
category: Category
keywords: String
description: String
stage: Stage
status: Status
votes: Number
decisionReport: File
apiSpec: File
apiSandbox: String
apiProxy: String
apiDoc: String
apiRepo: String
relatedFiles: File
slas: Object[0..*]
has_approval_request: Boolean
is_reviewed: Boolean
reviewed_by: User
created_at: Date
updated_at: Date

name: String
domain_team_id: Domain Team

Category

name: String
password: String
domain: Category
proposals: Proposal[0..*]
votedProposals: Proposal[0..*]
has_role: Role
created_at: Date
updated_at: Date

User

name: String
url: String

Domain Team

name: String
url: String

Pipeline

1

1 *

*

0..1

* *

user
producer
manager
admin

«Enum»
Role

Analysis
Design
DevTest
Security
Deployment
Analytics
Operations
Retirement

«Enum»
Stage

proposals

*

votedProposals

domain

In Progress
Approved
Rejected

«Enum»
Status

domain_team_id 1

name: String
owner: String
url: String

Repository

name: String
url: String

Organisation

category

11

Web Application

Source Code Management

1

1

1..*

1

*

apiRepo 1

1 1

File Server

name: String
url: String

File

*

apiSpec

relatedFiles
decisionReport

Figure 4.7.: The data model of the web application prototype

All prototype related data collections are grouped in the web application area. The
remaining areas have a rather supportive function. Particularly, the prototype related
data collections consist of a user, a proposal and a category data collection. Each of the
collections in the data model holds various attributes. In addition, there are relationships
between the data collections. A user holds a list of proposals that are owned by him and
a list of proposals that he voted for. Both a proposal and a user belong to a category or
rather a domain. An API proposal is connected to a file server to store files like the API
specification. Furthermore, a proposal has a repository which is connected to a CI/CD
pipeline to enable continuous improvement. A repository is allocated to a domain team in

45

4. Conceptual Design

the source code management area. The number of domain teams depends on the number
of categories in the web application. All domain teams are part of one organization which
is the API provider’s company.

46

5. Prototypical Implementation

After forming the conceptual base for the design artifact, the next chapter gives an intro-
duction into the technological realization of the web application prototype. As previously
mentioned, the prototype focuses on the first two stages of the Collaborative API Lifecycle
Management. For that, an overview about the general architecture is given which is
followed by a short outline of the technological foundations. Afterwards, the front-end
and the back-end of the prototypical solution are each elaborated in detail.

5.1. Architecture

The whole architecture of the design artifact follows the design best practices of a mi-
croservice architecture. Figure 5.1 shows an overview about the underlying architecture
of the prototypical solution in form of a component diagram. The idea of a microservice
architecture is to break a monolithic system into small, autonomous and easily manage-
able services that interact with each other. Furthermore, microservices follow the two
principles of loose coupling and high cohesion which are common design goals for all
kinds of software development products. Loose coupling means that „a change to one
service should not require a change to another.“ (Newman 2015). High cohesion can be
described as related behavior needs to be grouped together, while unrelated behavior
needs to be separated.

The architecture of the prototype consists of five subsystems, one database and one file
server. The first subsystem is the Web Application Prototype which at the same time
represents the core of the architecture. The Web Application Prototype subsystem is
divided into a User interface (UI) and a Backend for Frontend (BFF). The UI is specifically
a web UI, serving as the only component of the front-end. Further details are described in
section 5.3. The BFF is part of the back-end and serves as a communication middle layer
between the UI and various back-end microservices. The idea of the BFF pattern is that for
every type of the UI e.g. web, mobile, tablet, etc., a corresponding server-side component,
called BFF, is customized. Depending on the type of UI, the BFF then handles different

47

5. Prototypical Implementation

<< Subsystem >>
Tools

<< Component >>
SCM

<< Subsystem >>
API Gateway

<< Component >>
API Proxy

<< Subsystem >>
Service Platform

<< Service >>
Proposal Management

<< Service >>
API Specification Linter

<< Subsystem >>
Identity Management System

<< Component >>
Authentication

<< Subsystem >>
Web Application Prototype

<< Application >>
Backend for Frontend

<< Application >>
User Interface

File Server Database

<< Component >>
CI/CD

Figure 5.1.: The overall architecture of the prototypical solution for Collaborative API
Lifecycle Management

amount of communication intensity with each single back-end service from the Service
Platform subsystem. Section 5.4 provides further insights into the BFF.

Connected to the BFF, is the second subsystem which is the Service Platform. The Service
Platform subsystem collects all back-end services. Each service provides a certain service
functionality. Currently, the prototypical solution makes use of two services, which are
the Proposal Management service and the API Specification Linter service. The Proposal
Management service handles all information directly related to API proposals. As elabo-
rated in section 4.4.2, API proposals build the common medium for collaboration between
API consumer and API provider for the first few stages of the CALM model. Linked to the
Proposal Management service is also a database for persisting proposal information (see
Data Model in section 4.4.4). In addition, the Proposal Management component handles
also the communication to a file server, which stores e.g. API specifications and other files
of the API proposals. More details about the Proposal Management service are outlined in
section 5.4. The overall task of the API Specification Linter service is to structurally check
API Specification files for violations against predefined governance guidelines. Deeper
insights about that service are given in section 5.4.

The remaining three subsystems are the Identity Management System, the API Gateway
and the Tools. The Identity Management System handles the server-side authentication
and provides access tokens to the UI. In other words, it realizes the user login and user
registration functionality of the UI. The main function of the Identity Management System

48

5. Prototypical Implementation

is to manage all registered users for Web Application Prototype and to set user roles,
user permissions, etc. Both the API Gateway and the Tools subsystems are used by the
Proposal Management service to enable the automated project generation approach for a
successfully approved API proposal. Specifically, the API Gateway provides an API proxy
which is needed for enabling the API mock (cf. section 4.3). For the current version of the
prototype, this API mock feature could not be realized yet and is subject to future work.
The Tools subsystem consists of a source code management (SCM) system as well as a
continuous integration and continuous delivery (CI/CD) system. Both are related to the
development environment of an API.

As a final remark, the prototypical solution uses REST as communication basis between the
presented components. Furthermore, the provided architecture is considered as a generic
one. This particularly means that the used technologies and programming languages
for the components of the prototype’s architecture are exchangeable with others on the
market.

5.2. Technological Foundations

The following section provides a short overview about the used technologies and program-
ming languages for the prototypical realization. The technological details for each single
component of the architecture are presented in Table 5.1. As previously mentioned, the
chosen technological support for each component is not limited to the displayed ones.

Table 5.1.: An overview about the technological support for each component of the proto-
type’s architecture

Architectural Component Technological Details Reference

01 User Interface Angular 5 angular.io
02 Backend for Frontend NodeJS nodejs.org
03 Proposal Management NodeJS nodejs.org
04 API Specification Linter Zally github.com/zalando/zally
05 Identity Management System Auth0 auth0.com
06 API Gateway Apigee apigee.com
07 SCM Github github.com
08 CI/CD CircleCI circleci.com
09 Database MongoDB, Mlab mongodb.com, mlab.com
10 File Server AWS S3 aws.amazon.com/s3

The prototype generally uses the MEAN stack as coding foundation. The web application
makes use of Angular 5 for the front-end development and NodeJS for the back-end
development, including the BFF and the Proposal Management service. Since the commu-

49

https://angular.io/
https://nodejs.org/
https://nodejs.org/
https://github.com/zalando/zally
https://auth0.com/
https://apigee.com/
https://github.com/
https://circleci.com/
https://www.mongodb.com/
https://mlab.com/
https://aws.amazon.com/s3

5. Prototypical Implementation

nication basis is REST, the realization of the API endpoints for the back-end components
is done by using ExpressJS. MongoDB is used for the database and is hosted on Mlab for
development convenience purposes. The remaining architectural components 4 to 10 are
supported by technologies, provided by various companies.

At the very beginning of the prototype’s implementation phase in this thesis, Camunda1

was tried to be used for the realization of the Proposal Management service. This open-
source software tool is a workflow and decision automation platform, supporting BPMN,
CMMN and DMMN models, and is rest upon Java SpringBoot2. The advantage of
Camunda is that business processes can be automated, analyzed and optimized with
visual tools. Since a flexible, agile process for the prototypical solution was needed, BPMN
was firstly used as basis, but then replaced by the CMNN modeling language. First initial
versions of both business process modeling approaches are attached in the appendix A.
The whole solution approach with Camunda was later suspended, due to complexity
reasons. Nevertheless, this technology is still worth considering for other functional
services.

5.3. Web Frontend

After introducing the architecture and the technological foundations for the prototype, the
following sections deals with the front-end development details. At first, an overview for
the whole realization of the front-end is given. Subsequently, the major realized views of
the web application is presented.

5.3.1. Overview

As previously mentioned, the whole front-end architecture is built on Angular 5. In addi-
tion, the visual representation of the front-end elements is supported by two frameworks,
namely Angular Material Design3 (latest version 5) and Twitter Bootstrap4 (latest version
4). The predefined visual elements from the Angular Material Design framework build
the foundation for the front-end, while only the grid system of the Twitter Bootstrap
framework is used for arranging the elements in the web browser. An overview about the
overall front-end structure is depicted in Figure 5.2.

1https://camunda.com/
2https://spring.io/projects/spring-boot
3https://v5.material.angular.io/
4https://getbootstrap.com/

50

5. Prototypical Implementation

Figure 5.2.: An extract from the prototype’s front-end documentation

In general, the realized front-end covers 23 components and each of them is organized
in one module. The reason why the components are organized in modules is because
of reusability and ease of maintenance. One component can consist of several other
components that are harmonizing with each other. All major views of the prototype are for
instance based on a big component which includes other smaller components. Besides of
components, seven injectables are used for data access, authentication handling and other
interaction purposes. The prototype makes also use of a pipe which transforms data into
a certain data format for visualizing data through a component. Lastly, two classes and
nine interfaces are used for type casting the requests and responses of API endpoints.

5.3.2. Major Views

The four major views of the prototypical web application are elaborated in the following
section. The four major views are the Home View, the Proposal Creation View, the
Proposal Overview View and the Proposal Details View.

Home View

The Home View is the first view that a user sees after he successfully logged in into
the web application. Figure 5.3 shows an example screenshot of the Home View. The
general idea of the Home View is to have an overview about existing API proposals in
the system. The existing API proposals are depicted as white rectangle-shaped boxes.
Furthermore, the user can filter for certain proposals, based on predefined categories. The
filter is centered in the screen and located above the white API proposal boxes. Another
feature of the home screen is that a user can also look into the details of a proposal by
clicking on the respective box. In addition, the user has the possibility to navigate to the
Proposal Creation View, depicted by the blue rectangle-shaped box.

51

5. Prototypical Implementation

Figure 5.3.: An example of the prototype’s Home View

Proposal Creation View

In the Proposal Creation View, the user is guided through a predefined form to submit an
API proposal. The form consists of four steps and acquires the most important information
for an API proposal. Figure 5.4 shows an example of the Proposal Creation View. The
first step asks for general information about the API proposal which includes e.g. the API
name, the pricing and the purpose description of the API. The second step is considered as
optional and can be skipped. This particular step requires the user to provide API-related
files for upload. The user has the possibility to upload a Swagger-based5 API specification
or also other files like mock-ups. The third step mainly displays the provided information
from the previous two steps for confirmation and enables a submission button for sending
the API proposal into the system. Finally, the last step notifies the user about a successful
or unsuccessful submission.

5https://swagger.io/

52

5. Prototypical Implementation

Figure 5.4.: An example of the prototype’s Proposal Creation View

Proposal Overview View

The main focus of the Proposal Overview View is to show all API proposals that are
persisted in the web application’s database. In addition, a further shortcut to the Proposal
Creation View is provided to the user in form of a blue button at the top of the page.
Generally, the page is divided into three containers which classify the API proposals into
three predefined groups.

Figure 5.5a shows the Review Board container which includes API proposals that need
to be reviewed or are already reviewed. While this container is only visible to manager
and admin accounts, the two containers in Figure 5.5b are viewable by all authenticated
user account types (cf. Table 4.6). The All Submissions container holds all API proposals,
submitted by all available users of the web application prototype. The My submissions
container implies only API proposals, submitted by the current authenticated user account.
In general, all container boxes include tables to organize the proposal data. All the tables
are by default paginated, provide a search text field to filter the data and the columns of
the tables can be sorted.

53

5. Prototypical Implementation

(a) Part 1: An example of the Review Board container

(b) Part 2: An example of the My Submissions and All Submissions container

Figure 5.5.: An example of the prototype’s Proposal Overview View

54

5. Prototypical Implementation

Proposal Details View

The Proposal Details View holds a variety of features. Since an API proposal is considered
as the common medium for the collaboration between API consumer and API provider,
various collaboration features are provided on that page (cf. section 4.3). Besides, an
automated project generation approach for a successfully approved API proposal is also
included to accelerate the lifecycle process (cf. section 4.4.2). Figure 5.6 shows an example
screenshot of that page.

In general, the Proposal Details View gives the user the possibility to vote for an API
proposal and to make discussions with other people about the proposal details. Voting is
indicated by clicking on the „thumb icon“, located at the top right of the API proposal page.
Discussions take place in the commenting system at the bottom of the page. Besides text,
further materials like files or pictures can be attached into a comment. The commenting
system is using a third party service, offered by Disqus6. Figure 5.6a shows the upper
half of the API proposal’s page. While the left side gives an overview about the general
information of the API proposal like e.g. API name, description, etc., the right side
provides the most relevant information of the API proposal in form of a blue rectangle-
shaped box. This blue box shows for instance the current lifecycle status and development-
related documents of an API proposal. Below the blue box, important approval status
information is displayed.

Further design details for an API proposal are also shown in the Proposal Details View.
Figure 5.6b shows the lower half of the Proposal Details View. Like in the Proposal
Creation View, the lower half offers again the possibility to upload files which includes
an API specification or other relevant files. In case, some files were already uploaded
during the proposal creation phase, the new uploaded files would overwrite the old ones.
Generally, the uploaded files are shown in the blue box on top of the Proposal Details
View and can be viewed by clicking on the respective hyperlink. With regard to the
API specification upload, the UI will notify the user of any structural violations for an
uploaded API specification. The violation results are generated with the help of the API
Specification Linter service (cf. section 5.1). An example output is shown in Figure 5.7.

Another design detail are Service Level Agreements (SLA). The SLAs can be optionally de-
fined and dynamically added to an API proposal by the „plus icon“, shown in Figure 5.6b.
The idea of SLAs is to make sure that the production-ready version of the API fulfills a
certain service quality standard. This is particularly important for API consumers, since
the proposed API will be used in the API consumer’s own service like in form of a mobile
app or website.

6https://disqus.com/

55

5. Prototypical Implementation

(a) Part 1: An example showing the general information about an API proposal

(b) Part 2: An example showing the design details of the API proposal

Figure 5.6.: The Proposal Details View of the web application prototype

56

5. Prototypical Implementation

Figure 5.7.: An example output from the API Specification Linter after uploading the
Swagger API Specification to the AWS S3 bucket file server

Another aspect to be highlighted in the Proposal Details View is the review system for
proposals which was elaborated in section 4.4.2. The realization of the review system can
be seen in Figure 5.8 and mainly follows the conceptual steps in the state machine diagram,
illustrated in Figure 4.5. Once a proposal is submitted by an API consumer, the enterprise
architect (API provider) can send an approval request for that API proposal. This is
indicated by the „tick icon“ in Figure 5.8a. After sending the approval request, the API
proposal switches into the review mode, shown in Figure 5.8b. The enterprise architect
can choose to approve or reject a proposal, by clicking the respective button shown in
the UI. Assuming that an API specification is already provided and the proposal will be
approved, the automated generation of the API development environment takes place
which includes the setup of the CI/CD, the Github repository and the API documentation.
As already mentioned in the architecture section (cf. section 5.1), the API mock could be
implemented yet and is subject to future work. Figure 5.6a and 5.8c shows an example of
the UI for an approved API proposal.

(a) Step 1: Review System - Get approval request for API proposal

Figure 5.8.: The Review System: Transition from sending an approval request to approving
an API proposal

57

5. Prototypical Implementation

(b) Step 2: Review System - Review API proposal

(c) Step 3: Review System - API proposal approved and reviewed

Figure 5.8.: The Review System: Transition from sending an approval request to approving
an API proposal (Cont’d)

5.4. Backend

The previous section had a look into the overall front-end structure of the web application
prototype. The next section highlights important aspects of the back-end development.
The back-end for the prototypical solution consists of three components. The three
components are the BFF, the Proposal Management service and the API Specification
Linter service. All three are shortly described in the following.

Backend for Frontend

The main idea of the BFF is to ease the communication between the front-end and various
services. The BFF functions as a middle layer and realizes a Façade Design Pattern. The
Façade Pattern „provide[s] a unified interface to a set of interfaces in a subsystem.“ (Patni
2017). The main advantage of that pattern is to reduce complexity and to support an easy
management of the back-end code base. At the beginning of the implementation phase of
this thesis, it was unsure, if only one back-end should be used to handle all the necessary
logic or if several smaller services with different technologies would be better. At the end,
the decision led to a microservice architecture approach. By the use of the Façade Design
Pattern for the BFF, it was then unimportant which technologies each single service would
have supported. The main result is that the back-end architecture is flexible, agile and
further services can be attached to the Service Platform component of the prototype’s
back-end architecture.

58

5. Prototypical Implementation

Proposal Management Service

The first task of the Proposal Management service is to handle the manipulation of API
proposal data. The service provides REST endpoints to retrieve, create, update or delete
data. For that, the service is connected to a database which stores that data. The details for
the database’s data model can be seen in section 4.4.4. The second task of the service is to
trigger certain functionalities. One functionality is for example the upload of files into a
connected file server. But a more important functionality that needs to be highlighted is
the automated generation of the API development environment. For the automation, five
initial actions have to be conducted beforehand:

1. Create an Github account

2. Create an organization in that Github account

3. Create several teams inside the organization (1 team = 1 API proposal category)

4. Create a CircleCI account and connect the Github account to it

5. Prepare a template repository in the organization

The general idea of the automation approach is to prepare a template folder structure
with all the necessary configuration files inside a repository. Once an approval for an
API proposal is triggered in the UI, the template repository is duplicated, adapted to the
information of the approved proposal and all the third party development tools are set
up. The basis for triggering the development tools is a combination of REST endpoint
calls and executing customized script logic. Besides, the API documentation is enabled by
using Widdershins7 and Github Pages8 as foundation.

API Specification Linter Service

The API Specification Linter service allows to analyze the content structure of API Speci-
fication files. Specifically, it focuses only on structural properties, whereas the semantic
relevance is ignored. In other words, the service validates the file’s syntax, but the service
is not able to understand the provided content. In case, the structure of the given Swagger
file does not follow predefined rules, a number of violations will be returned as response.

7https://github.com/Mermade/widdershins
8https://pages.github.com/

59

5. Prototypical Implementation

The current version of the prototype applies the default rules, defined by Zalando’s REST-
ful API Guidelines9. However, those guidelines can be adapted with the coding language
Kotlin10. The adapted guidelines can be then implemented in the open source code of the
linter service.

The linting approach in the current prototype requires that firstly, the API Specification
file is formatted either as JSON or YAML document and secondly, it is accessible through
a URL. In the case of the prototypical solution, the Swagger file is located on an AWS S3
bucket which provides the URL of that file. To lint the API specification, a request with
the URL location of the file, as shown in Listing 5.1, need to be sent to the REST endpoint
http://localhost:8080/api-violations.

� �
1 {
2 "api_definition_url": "https://s3.eu-central-1.amazonaws.com/calm-

bucket/proposals-folder/swagger-api-spec.json"

3 }� �
Listing 5.1: An example of the request body in JSON format for the API Specification

Linter endpoint

After sending the request to the given REST endpoint, a response with various attributes
is returned. Listing 5.2 displays an example for a linting output. The output has two major
attributes that are relevant for the prototype. The first attribute violations holds an
array of several violation objects. Each of these objects represents one violation against
a specific guideline. The second attribute violations_count reflects a statistic and
informs about how many violations are represented in each violation category.

Generally, the API Specification Linter service makes use of four categories, which
are MUST, SHOULD, MAY and HINT. The first three are interpreted as described by the
RFC211911 Standard. The last category HINT is only introduced by Zalando. The MUST
category can be described as a required guideline, the SHOULD category as a recommended
guideline and the MAY category as optional guideline. The HINT category has a minor
relevance. The current prototype version pays the highest attention to MUST violations
and it will not accept any API Specification, if MUST violations occur. This means MUST
violations are required to be fixed, while other violation types can be firstly ignored.

9https://opensource.zalando.com/restful-api-guidelines
10https://kotlinlang.org/
11https://www.ietf.org/rfc/rfc2119.txt

60

5. Prototypical Implementation

� �
1 {
2 ...
3 "violations": [
4 {
5 "title": "Specify Success and Error Responses",
6 "description": "operation has to contain the default response",
7 "violation_type": "MAY",
8 "rule_link": "https://zalando.github.io/restful-api-guidelines

/#151",
9 "paths": [

10 "/paths/~1identifier-types~1{identifier_type}~1source-ids/

get"

11],
12 "pointer": "/paths/~1identifier-types~1{identifier_type}~1

source-ids/get"

13 }
14],
15 "violations_count": {
16 "may": 1,
17 "hint": 0,
18 "should": 0,
19 "must": 0
20 }
21 }� �

Listing 5.2: An example of the response body in JSON format from the API Specification
Linter endpoint

61

6. Evaluation

After the previously described details of the prototypical implementation for a Collabo-
rative API Lifecycle Management, this coming chapter deals with the evaluation of the
prototype to validate assumptions and to gain feedback about the current status of the
realized prototypical solution. The evaluation goal is to determine whether the overall
concept of the designed solution is suitable in the business environment. Particularly,
the evaluation reveals insights about the supporting features for the API Lifecycle and
determines, if the chosen features are helpful to overcome the challenges, mentioned in
the literature as well as by the industry partner. The evaluation uses the SUS evaluation
method from (Brooke 1996) and is extended by further expert interviews in form of open
qualitative questions. The structure of the interview setting, the results of the interviews
and the possible enhancements for the prototype are presented in the following.

6.1. Expert Interview Setting

Since the evaluation is conducted in form of a case study with expert interviews, the
whole interview design follows the recommendations by (Yin 2009). Figure 6.1 depicts the
general approach of the interview series to validate the proposed solution in this thesis.

Interview Goal
Evaluation of the usability and
utility of the proposed solution
for Collaborative API Lifecycle

Management

Prepare Interview
Design of the interview's
structure, create fictive

scenarios and prepare mock
data for the prototype

Conduct Interview
Conduct the interview with 7
interviewees from different
core areas and expertise

Present Results
Summarize the key findings,

limitations and future work on
this research

Analyze and
Conclude

Collect all results from
interview reports, interprete

and conclude

Figure 6.1.: The overall approach of the case study including expert interviews

62

6. Evaluation

The evaluation approach begins with the definition of a clear goal for the evaluation
process. The goal is set as the „Evaluation of the usability and utility of the proposed
solution for Collaborative API Lifecycle Management“. The focus lies specifically on the
usability and the general utility of the tool within a business environment. The business
environment for the evaluation is created through scenarios.

Since there are two main participant groups, which are on the one hand API consumer
and on the other hand API provider, two scenarios with typical activities for both groups
are designed in the consecutive phase of the interview setting. The details of the inter-
view scenario designs are attached in the appendix B. The first scenario addresses API
consumers. The primary goal of the first scenario is to let API consumers submit an API
proposal with all its necessary details which includes for instance an API specification or
some service level agreements (SLA). The second scenarios focuses on the API provider,
especially on the enterprise architect (EA). In the designed API Lifecycle (cf. section 4.2),
the EA is the responsible person to review proposals. As shown in the RBAC model (see
Table 4.6), an EA, having a manager user role, is only allowed to review proposals from
the same domain as his/her own. Thus, the second scenario covers activities such as
approving or rejecting a proposal and preparing the proposal for the next lifecycle stage,
namely the Dev&Test stage. Each scenario includes actively using the web application
prototype to fulfill the activities. After executing each scenario, the interviewees fill out the
SUS questionnaire and are asked further open qualitative questions about the designed
solution approach.

The interview is conducted with interview partners from different core areas. As shown
in Table 6.1, most of the interviewees are enterprise or software architects. The architects
are all employees of the industry partner, and all of them have long-time, sounded
software development skills. Thus, they are able to undertake both the first scenario
for API consumers and the second scenario for API providers. RA1 and RA2 are both
research associates from the Technical University of Munich in Germany. Both are not
familiar neither with the current nor the target process for APIs in the industry partner’s
environment. Therefore, both personally undertake only the scenario for API consumers.
Nevertheless, the results of the API provider’s scenario are shown and explained to
them.

The interview setting ends with interpreting the interview results and drawing conclusions.
Limitations and further improvements about the current web application prototype are
carved out and described in the coming section.

63

6. Evaluation

Table 6.1.: The chosen interview partners for the evaluation of the prototype

Role Alias Years Active Core Area Dev Experience

1 Research
Associate

RA1 5 years Knowledge Management,
Knowledge Transfer, Soft-
ware Architecture

7 years

2 Research
Associate

RA2 3.5 years Model based User Inter-
faces

20 years

3 Enterprise
Architect

EA1 6 years Big Data, Search Technolo-
gies, Distributed Systems

20 years

4 Enterprise
Architect

EA2 8 years System Integration, SOA 15 years

5 Software
Architect

SW1 3 years Infrastructure, DevOps 17 years

6 Enterprise
Architect

EA3 8 months Mobile Apps 10 years

7 Enterprise
Architect

EA4 3.5 years Application Integration,
SOA

5 years

6.2. Interview Results

In general, the perception of the prototypical solution by the participants is mixed. Beside
an overall positive feedback, there are also doubts and concerns about some parts of the
proposed solution approach, demonstrated via the web application prototype. The results
also show that the current prototypical implementation seems to be better optimized
for the API provider side than for the API consumer side. In other words, the features
included into the current prototype satisfy the API providers and helps them to overcome
typical challenges. However, the API consumer side still lacks of supportive features.
Further details about the evaluation outcomes are elaborated in the subsequent sections.

6.2.1. System Usability Scale

The SUS evaluation method is considered as „valuable evaluation tool, being robust and
reliable“ (Brooke 1996). It is a questionnaire with ten standardized statements. Each
statement has a 5-point scale, ranging from strongly disagree (1) to strongly agree (5).
Before further open questions are asked and discussions are started, SUS is used right
after the interviewee has had the chance to use the web application prototype. Also, the
interview partners are asked to „record their immediate response to each item, rather than
thinking about items for a long time“ (Brooke 1996). Figure 6.2 shows an example of the
SUS questionnaire.

64

6. Evaluation

Figure 6.2.: The 10 statements of SUS from (Brooke 1996)

65

6. Evaluation

As mentioned in the interview setting in section 6.1, the presented scenarios end each
with a SUS questionnaire which each interviewee needs to fill out. The idea of SUS
is that participants indicate their personal opinion about the strength of agreement or
disagreement for each single statement, with regard to the used web application prototype.
The score for each statement has no meaning on its own. As a result, SUS follows a certain
calculation. The goal is to have a single number, „representing a composite measure of
the overall usability of the system being studied“ (Brooke 1996). Each statement has a
score contribution which ranges from 0 to 4. With regard to the 5-point scale for each
statement, the scale position 1 contributes to a score of value 0, and subsequently the next
position 2 on the 5-point scale to a score of value 1. Accordingly, this mapping continues
until scale position 5, contributing to a score of value 4. The setting of SUS consists of
alternating positive and negative statements. Thus, for all statements 1, 3, 5, 7 and 9 the
score contribution is calculated as scale position minus 1. Respectively, for all statements
2, 4, 6, 8 and 10, the score contribution results from 5 minus the scale position. Lastly,
the scores are summed up and multiplied by 2.5 to achieve the overall SUS score. This
calculation mechanism is used for all the interview series. The results for the interview
series are summarized in Table 6.2.

Table 6.2.: The SUS score results for scenario 1 (API Consumer) and 2 (API Provider)

Alias Score of Scenario 1 Score of Scenario 2

1 RA1 77.5 -
2 RA2 35 -
3 EA1 77.5 87.5
4 EA2 87.5 95
5 SW1 90 77.5
6 EA3 95 92.5
7 EA4 85 87.5

Average 78.21 88.0

Generally, the SUS score ranges from 0 to 100. It is hard to understand what an individual
SUS score means. Therefore, Bangor et al. 2009 suggest to add adjective ratings, acceptabil-
ity scores or school grading scales to interpret the individual SUS scores easier. As shown
in Figure 6.3, any SUS score above 70 is considered as acceptable. Hence, both average
scores for scenario 1 and 2 reveal that the current prototype is usability wise accepted by
the majority of the participating interview partners. Nevertheless, the average SUS scores
for scenario 1 and 2 also show that the current solution has still space for improvement,
especially with regard to the API consumer side.

Particularly, the scores of RA1 and EA1 reflect a C grade, and the score of RA2 even an F
grade. Overall, it can be seen, that the support for API consumer and API provider by
the current prototype, are experienced differently. Among all the architects (EA1, EA2,

66

6. Evaluation

Figure 6.3.: The relationship between the SUS score and adjective ratings, acceptability
scores, and school grading scales (Bangor et al. 2009)

EA3, EA4, SW1), there are people favoring one side over the other. Nonetheless, there is
not a clear trend towards one direction. SUS generally does not provide insights into each
individual interview partner’s opinion. As a result, additional open qualitative questions
are asked to find out details about the interviewees’ assessments. The focus lies particularly
on retrieving limitations of the overall solution approach and also recommendations to
improve the artifact in further design iterations.

6.2.2. Open Qualitative Questions

Before the end of each interview, the interviewees are asked four open qualitative ques-
tions, in order to understand their personal point of view about the current status of the
solution design. The four qualitative questions are part of the evaluation script which is
shown in appendix B.

In general, the overall judgment about the web application prototype is perceived positive
by the majority of the participating respondents. Most of the people like the concept of
the proposed solution to support the lifecycle for APIs in form of a web application. Some
points about the design artifact that the respondents highlight are:

• API Specification linter to pre-check violations in the provided Swagger/OpenAPI
file

• Automated generation of the development setup for an API proposal

• Social features like voting and commenting

• Integration of existing development tools like Github

67

6. Evaluation

• Clear, structured and simple UI design

Feedback to Acceleration Approach

In terms of accelerating the API Lifecycle, there is a clear tendency that all architects (EA1,
EA2, EA3, EA4, SW1) agree that the current prototype would generally help to make the
API Lifecycle faster. Some arguments that are provided by the architects and support this
assessment are:

• Transparency over the whole API Lifecycle

• Central place to start the process for getting an API

• Status tracking of the API progress

• Standardized, structured and unified form for acquiring information

• All important information related to an API proposal visible at one place

• API First approach itself increases acceleration

• API stubbing or API mock idea provides independence among API consumer and
API provider

In comparison, RA1 and RA2 are either unsure or doubt the acceleration boost. Both are
generally skeptical about the API-First approach which is used in the proposed solution
design. RA2 adds that he would like to have more user centered design features for the
API consumer side. RA2 and EA7 mention also that the current prototype might be only
optimized for the API provider side. As already seen in a previous section, this argument
is also reflected in the average SUS scores, shown in Table 6.2.

Feedback to Collaboration Support

Regarding the collaboration among the different stakeholders within the Collaborative
API Lifecycle, the opinions among the interviewees widely differ. In general, slightly more
of the participating interview partners express a positive point of view. The results do
not show a clear tendency towards one direction. It slides between a rather neutral and
a positive point of view. The included collaboration features like comments and votes
add higher collaboration value. Comments are useful for discussions which are directly

68

6. Evaluation

visible below the API proposal details. Votes are also useful to filter popular proposals,
driven by the market need. Nonetheless, there could be further features added to achieve
even higher collaboration among the participants. Further details are elaborated in the
next section 6.3. According to EA2 and EA3, collaboration value is only achieved, if all
the participants are actively using the provided features. Without any active commitment,
both will doubt that the collaboration features will create any value. EA3 even adds that
people might misuse the comment feature to negotiate the price of a proposal. In terms of
communication, he further extends his point of view by mentioning that comments might
be more helpful for external customers rather than for internal employees.

6.3. Concerns and Possible Enhancements of the Solution
Design

The interview results reveal a few limitations and enhancement ideas. Besides technical
feedback, some interview partners provide further thoughts for redesigning parts of the
general conceptual solution approach. The following section starts with outlining general
feedback about the whole solution design. Afterwards, enhancement suggestions are
presented individually for each major view of the web application prototype.

6.3.1. General Technical and Conceptual Feedback

Based on the consolidated interview results, the following list presents a set of major
technical and conceptual enhancement suggestions for the overall prototype:

Staging model based on API type A few of the interviewed enterprise architects pro-
pose to dynamically adapt the staging model of the API Lifecycle in the prototype. This
means that the staging model should depend on the chosen API type (Public API, Partner
API, Private API) of a proposal. Based on the API type, the length and quality gates of the
staging model would be adjusted respectively. Furthermore, it is suggested to show the
whole API Lifecycle with the stages inside an API proposal. In addition, the latest stage
should be visually highlighted.

Flexible Review System The current design of the prototype does not allow a flexible
review system. In particular, once a proposal is rejected, it cannot return to the approval
process anymore (see Figure 4.5). However, the prototype should provide the chance
to improve the rejected proposal. A possible way could be to collect a list of issues for
rejection in form of a checklist and gradually resolve the issues. After all resolved issues,
the rejected proposal could restart the review process again.

69

6. Evaluation

Further categories for functionally disjunctive APIs One interviewed enterprise archi-
tect recommends to extend the classification of API proposals. Beside the domain or
category of a API proposal, the enterprise architect wishes for further granular differentia-
tion. He mentions that the functional coverage of APIs might overlap with each other. To
make APIs nearly functional disjunctive will be challenging.

Include further tools Several respondents comment that they prefer the way, how tools
like Github or others are currently integrated into the prototype. Generally, it is advised
to keep the prototype as supporting tool, like it is now. As a result, the integration of new
tools should be always evaluated for suitability. The majority also adds that the complete
integration of other technical tools should never be the goal. The UI would be otherwise
overloaded and the usability would decrease. However, an enterprise architect names
Atlassian Jira1 and Atlassian Confluence2 as further considerable tools.

Provide more examples, context information and constraints beforehand Generally,
several respondents suggest that the users should be given more context information to
guide them along the API Lifecycle process. They should be always kept updated about
subsequent steps or even direct them to the following step automatically. Furthermore,
examples and constraints should be provided to the user beforehand. This particularly
helpful, when a user creates the API Specification.

6.3.2. Feedback for the Home View

Based on the consolidated interview results, the following list presents a set of major
technical enhancement suggestions for the Home View :

More powerful search or filter element The majority of the respondents name the
Category Filter element as insufficient. Most of the respondents would like to have a
faceted search or even just a search text field. By using a faceted search, the user would
have predefined criteria that he could choose from. A search text field would provide more
flexibility. A combination of both UI elements might be also imaginable. Nevertheless,
there is no common agreement among the participating interview partners, what type of
search is suited best for the UI.

Add Gamification to support search Several interviewees mention that the API con-
sumer might not even want to search for existing proposals. Instead, the API consumer
would just directly create a new API proposal. One respondent suggests to add Gamifica-
tion to motivate users to search for a proposal.

1https://www.atlassian.com/software/jira
2https://www.atlassian.com/software/confluence

70

6. Evaluation

6.3.3. Feedback for the Proposal Creation View

Based on the consolidated interview results, the following list presents a set of major
technical enhancement suggestions for the Proposal Creation View :

Set API type and proposal visibility Some interview partners propose to allow the user
to set the type of the API, whether it is a internal, partner or external API. Beyond that,
some also recommend not to set all proposals to public by default. On API consumer
side, there might be some cases, where APIs should be only visible to a limited number of
people.

Use of date picker for availability date of API For most of the interviewees, the length
of the development period for the API is uninteresting. Instead, it is suggested to include
only the end date, when the API should be available for production usage. Also, a date
picker UI element would be more helpful for the user to easily select the date visually.

Save unfinished form state Some interviewees ask for storing the states of unfinished
forms. Firstly, if a user accidentally navigates to other pages, he or she should get a
notification alert. Secondly, the state of the inserted information into an unfinished form
should be restorable. The current version of the prototype would for instance erase all
inserted information in the Proposal Creation View, if the user has not submitted the
proposal yet and switches to another page.

6.3.4. Feedback for the Proposal Overview View

Based on the consolidated interview results, the following list presents a set of major
technical enhancement suggestions for the Proposal Overview View :

Introduce different voting level thresholds In order to visually catch the high demand-
ing API proposals easily, one interviewee recommends to classify and visually color
proposals, based on the number of their votes. Thresholds could be introduced, which
means that e.g. proposals with 0-10 votes are colored red, proposals with 10-100 votes are
colored yellow and proposals with votes above 100 are colored green.

Action shortcuts for reviewing proposals An action shortcut for voting was already
considered during the mockups creation phase for the design artifact. Due to the chosen UI
framework, this feature could not be implemented in the current prototype. Nevertheless,
it could be included in the next design iteration and extended by an action shortcut for
accepting or rejecting a proposal.

71

6. Evaluation

Provide new container for reviewed proposals The Review Board container holds, on
the one hand, proposals that need to be reviewed and on the other hand, proposals that has
been already reviewed. One respondent recommends to separate them into two different
containers, because he perceives that the Review Board container should contain only
proposals that still need to be reviewed. Additionally, both kinds of proposals should be
visually distinguishable.

6.3.5. Feedback for the Proposal Details View

Based on the consolidated interview results, the following list presents a set of major
technical enhancement suggestions for the Proposal Details View :

More status information from integrated tools Some respondents suggest to include
more information from integrated tools like those about the development status from
Github, since the development status is closely related to the overall status of an API. The
included information could be issues, discussions, version numbers, etc. Moreover, the
prototype is used by a variety of people with different roles. Hence, most of the displayed
information should be understandable for both with and without intense IT knowledge.

Github as main source of information Another possibility is to use Github as main
source of information or in other words, all information, related to an API proposal,
should be stored in the repository. The necessary proposal information in the the web
application prototype is then retrieved from the repository. In this case, the API related
files could be just linked to the location in the repository which would replace the file
upload features. The NPM website3 is mentioned as an example by an interviewee.
NPM package pages use the same described approach and retrieve the information to be
displayed from the respective Github repository.

More tool support for API Consumer The additional tool support for API consumers
is perceived by the respondents differently. Nevertheless, some would like to have a data
model and an SDK provided by the API provider, in order to create the API specification
easier. Additionally, a visual tool support for the creation of the API specification is also
mentioned. One respondent mentions Restlet4 as example.

History Record Feature One important collaboration feature that is recommended by
several interview partners is a history record feature. The idea of history record feature is
to record all changes that have been made to a proposal e.g. in form of a list or a timeline.
In addition, some also suggest to record the reason for proposal review decision.

3https://www.npmjs.com/
4https://restlet.com/modules/studio/

72

6. Evaluation

Annotation Feature Some interviewees wish for a way to annotate an API proposal
with graphics like diagrams or pictures to support the discussion point. In the current
prototype, graphics can be attached as files in the discussion section. Nonetheless, an extra
feature is considered more suitable.

Include quality gates for switching stages Some interviewed architects asked for in-
cluding the quality gates from the conceptual model directly into the prototype. The
quality gates could be visualized as a list of checkpoints. If all the checkpoints are fulfilled,
the stage of the API proposal will change.

Progress Tracking Feature Another feature, related to the status of an API, is a progress
tracking feature. The progress of an API proposal could be shown as a progress bar. The
fill level of the progress bar would then depend on, either how many quality gates are
fulfilled, or how many issues are solved on Github. A combination of both approaches
would be possible too.

Adapt representation of API Specification Linter results Firstly, a few interview part-
ners recommend to provide hints about the linting process to the user beforehand, since
the pop-up of the linting results in the current version of the prototype is considered as too
surprising to the user. Secondly, the visual display of the API Specification linting results
should be adapted. A traffic light or other color codes could be introduced to differentiate
the level of violations.

Consider Ratings instead of Votings A respondent suggests to use ratings instead of
votings. Unfortunately, a clear reason is not mentioned by the interviewee. During the
conception of the prototype, a rating system was also considered. The difference between
a rating system and a voting system is that a rating system expresses the value of an API
proposal, whereas a voting system the importance of an API proposal on the market. In
general, both are suitable and express similar intentions. Ideally, the second research
iteration would test the two features in a A/B testing environment.

Save changes automatically and manually There is no common agreement among the
participating interview partners, whether changes on an API proposal should be saved
automatically or manually by clicking a button. The current prototype requires a manual
approach. Generally, both approaches are considered suitable. One interviewee even
wishes for a combination of both ways. He recommends for file uploads a manual saving
approach due to confirmation reasons, whereas for all textual details or SLAs an automatic
saving would just be enough. However, further validation with A/B testing is needed.

73

6. Evaluation

6.4. Synthesis of Evaluation Results

The evaluation chapter provides insights about the perception of the prototype for Col-
laborative API Lifecycle Management. For that, a case study is conducted in form of
expert interviews. Section 6.1 shows the setting of the evaluation approach and the chosen
interview partners. Generally, the majority of the participating interview partners state
that the overall solution design approach is viable, adds value, and supports both API
consumer and API provider through the API Lifecycle process.

On the one hand, the evaluation results reveal that the prototype clearly accelerates the
lifecycle process for APIs. Based on the results from the SUS scores and from the open
qualitative questions, it can be seen that the interview partners are divided into two parties.
All interviewed architects show a positive support for the API First approach, while the
interviewed research associates, reflecting the external API consumers, doubt it. Further
details are elaborated in section 6.2.2.

On the other hand, the evaluation results show that the included collaboration features like
comments and votes are beneficial. However, some architects added that the collaboration
features need generally active commitment by all users, in order to reach their full potential.
Section 6.2.2 provides further details.

Since the evaluation of the design artifact is only conducted once in this thesis, there is
still much space for improvement in the solution design approach. The participating
respondents suggest a list of several technical and conceptual enhancement ideas that
can be included in subsequent validation iterations. Table 6.3 summarizes the provided
feedback and references the details of each feedback to the respective section in this
thesis.

74

6. Evaluation

Table 6.3.: A summary of the current prototype’s feedback acquired by expert interviews

Feedback Title Section

General Feedback

01 Staging model based on API type 6.3.1
02 Flexible Review System 6.3.1
03 Further categories for functionally disjunctive APIs 6.3.1
04 Include further tools 6.3.1
05 Provide more examples, context information and constraints beforehand 6.3.1

Feedback for Home View

06 More powerful search or filter element 6.3.2
07 Add Gamification to support search 6.3.2

Feedback for Proposal Creation View

08 Set API type and proposal visibility 6.3.3
09 Use of date picker for availability date of API 6.3.3
10 Save unfinished form state 6.3.3

Feedback for Proposal Overview View

11 Introduce different voting level thresholds 6.3.4
12 Action shortcuts for reviewing proposals 6.3.4
13 Provide new container for reviewed proposals 6.3.4

Feedback for Proposal Details View

14 More status information from integrated tools 6.3.5
15 Github as main source of information 6.3.5
16 More tool support for API Consumer 6.3.5
17 History Record Feature 6.3.5
18 Annotation Feature 6.3.5
19 Include quality gates for switching stages 6.3.5
20 Progress Tracking Feature 6.3.5
21 Adapt representation of API Specification Linter results 6.3.5
22 Consider Ratings instead of Votings 6.3.5
23 Save changes automatically and manually 6.3.5

75

7. Conclusion

The following chapter provides a conclusion about the research results, gained in this the-
sis. First, the key findings for each RQ are summarized. Furthermore, possible limitations
for this research are presented. Finally, a short insight into possible future work is given.

7.1. Summary

The coming section summarizes the key findings for each individual RQ.

RQ1: How could a holistic approach for an API Lifecycle, including phases, activities,
artifacts and roles, look like that is driven by the collaboration of participating stake-
holders?

Before building the conceptual model for CALM, it was necessary to define the require-
ments first. The requirements were retrieved from literature and conducted expert inter-
views. The results are summarized in section 4.1. In addition, existing API Lifecycles and
similar lifecycle approaches were compared and presented in section 2.3.3. Based on the
gained knowledge, the CALM model was formed with the help of further literature and
expert interviews. The current conceptual model is optimized for the industry partner’s
target API Lifecycle process. Compared to similar lifecycle approaches, the resulted lifecy-
cle model for APIs has both a product and service character. In addition, the API Lifecycle
model is flexible, agile and supports continuous improvement. The resulted conceptual
model for CALM is elaborated in section 4.2. Generally, the CALM model covered all
major challenges from the industry partner shown in section 4.1.1. Further requirements
from literature, shown in section 4.1.2, were also fully covered by the Full Lifecycle API
Management model which includes the CALM model (cf. Figure 4.1).

RQ2: How can tools and collaborative features be used to support the API Lifecycle
Management?

To assist the conceptual model, a prototypical implementation as design artifact was
conceived and developed. The design artifact has both a collaboration and acceleration

76

7. Conclusion

support. In general, the collaboration between API consumer and provider is based
on an API proposal. The chosen collaboration features include a voting system and a
commenting system which are attached to each API proposal (cf. section 4.3). To advance
the lifecycle process, an acceleration approach including an automated development
environment generation was added to the prototype. The planned API mock feature to
make API provider and API consumer independent could not be realized in the current
version of the design artifact yet. The system design of the prototype is described in
section 4.4 and the implementation details are elaborated in chapter 5.

RQ3: What are the users’ experiences of the designed web application prototype solu-
tion?

The evaluation of the prototype was conducted in form of a case study with expert inter-
views. The expert interviews were conducted with chosen participants from the industry
partner as well as researchers from the Technical University of Munich. The evaluation
goal was to assess the usability and utility of the proposed solution for Collaborative API
Lifecycle Management. Two scenarios with typical tasks for API consumer and provider
were created that the interviewees had to follow during the evaluation process. The
usability assessment was conducted by using the SUS evaluation method. Additionally,
further open qualitative questions were asked.

The evaluation results showed that the prototype is a viable solution. There was a clear ten-
dency towards a positive feedback for the acceleration approach. The acceleration through
a structured form and the automation approach were considered suitable. Nevertheless,
the results showed that the architects from the industry partner tended to support the
API First approach, while the interviewed researchers, representing external developers,
were skeptical towards this paradigm. In terms of collaboration, there was just a slightly
more positive feedback. A bit less than the half of the interviewees kept a neutral position.
The results showed that collaboration generally needs active commitment, otherwise the
existing collaboration features will not be used.

Overall, all the general idea of the proposed solution was considered helpful for both API
consumer and provider. The chosen collaboration features like the commenting system
and voting system were perceived positively. Further highlights of the prototypical
implementation include the API specification linter and the integration of existing tools
like Github. Details to the evaluation approach and results are described in chapter 6.

77

7. Conclusion

7.2. Limitations

In general, there are a few known limitations that got an impact on the research results of
this thesis. The following section outlines the major limitations.

In general, this thesis applied the DSR approach by (Hevner et al. 2004). Due to the narrow
time frame of this master’s thesis, the assessment-and-refinement cycle between building
and validating the design artifact could be only conducted once. Particularly, weaknesses
of the first version of the prototype could be identified, but the prototype has not been
improved yet.

Another limitation is that the whole research was conducted in only one company and the
majority of the interviewed people were employees from the industry partner. A bigger
number and a wider diversity of interview partners would have strengthened the validity
of the interview results.

With regard to the interview setting, the interview procedure was subject to natural
cognitive biases, impacting the evaluation results. Since there were two scenarios for the
architects to be executed with the prototype, the impressions of the first scenario might
have influenced the impressions of the second one. In other words, the SUS score from
scenario 1 and 2 were affected by each other. This phenomenon is also known as Priming.
Further psychological effects might have occurred and need to be considered.

Lastly, further API protocols like GraphQL could have been considered for research
besides REST. This would have included some technology adaptions and might have
impacted the overall solution design approach.

7.3. Future Work

The key findings of this thesis can be used as basis for various future research. Some
insights into potential future work is given in the following.

The previously described section gave an overview about known limitations of this the-
sis. Naturally, all of them could be possibly addressed in future research. With regard
to limitations, this thesis provided also a summary of further technical and conceptual
enhancement ideas for the design artifact that was proposed by the interview partners.
A summary of the interview feedback is shown in the Table 6.3. Overall, the evaluation
results revealed that in terms of usability, the prototype still left space for improvement.

78

7. Conclusion

Particularly, the API consumer side need to be given more attention towards user-centered
design. Additional methods like Gamification or Machine Learning might ease the experi-
ence when using the prototypical solution.

Moreover, the current prototype for Collaborative API Lifecycle Management realized
only a limited number of all the use cases, shown in Figure 4.3. The prototypical solution
could be extended by the remaining use cases or further ones could be carved out, using
the results of this thesis as basis.

Last but not least, the conceptual model for API Lifecycle Management was formed using
literature foundations and the inputs from expert interviews with the industry partner. In
order to create a generic lifecycle model for APIs, further validations with other companies
need to be conducted.

To conclude, the prototype is overall a viable solution that accelerates the API Lifecycle
Management and offers helpful collaboration features. It provides value to both API
consumers and API providers.

79

Bibliography

Apigee (2016a). API Best Practices - Managing the API Lifecycle: Design, Delivery, and Every-
thing In Between. Ebook. URL: https://pages.apigee.com/rs/351-WXY-16
6/images/API-Best-Practices-ebook-2016-12.pdf (accessed on Mar. 13,
2018).

Apigee (2016b). The State of APIs - 2016 Report on Impact of APIs on Digital Business. Report.
Apigee. URL: https://pages.apigee.com/ebook-State-of-APIs-reg.
html (accessed on Mar. 9, 2018).

Bangor, Aaron, Philip Kortum, and James Miller (2009). “Determining What Individual
SUS Scores Mean: Adding an Adjective Rating Scale.” In: J. Usability Studies 4.3,
pp. 114–123.

Bermbach, David and Erik Wittern (2016). “Benchmarking Web API Quality.” In: Web
Engineering. Ed. by Alessandro Bozzon, Philippe Cudre-Maroux, and Cesare Pautasso.
Vol. 9671. Cham: Springer International Publishing, pp. 188–206. DOI: 10.1007/978
-3-319-38791-8_11. (Accessed on Aug. 16, 2018).

Bloch, Joshua (2006). “How to Design a Good API and Why It Matters.” In: Companion to
the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems, Languages,
and Applications. OOPSLA ’06. New York, NY, USA: ACM, pp. 506–507. DOI: 10.114
5/1176617.1176622.

Brodsky, Laura and Liz Oakes (2017). Data sharing and open banking. Data sharing and
open banking. URL: https://www.mckinsey.com/industries/financial-
services/our-insights/data-sharing-and-open-banking (accessed on
Apr. 4, 2018).

Brooke, John (1996). SUS: A quick and dirty usability scale.

Brooke, John (2013). “SUS: A Retrospective.” In: J. Usability Studies 8.2, pp. 29–40.

Bruegge, Bernd and Allen H. Dutoit (2010). Object-oriented software engineering: using UML,
patterns, and Java. 3rd ed. Boston: Prentice Hall. 778 pp.

CA Technologies (2015). The API Management Playbook. URL: https://www.ca.com/
content/dam/ca/us/files/ebook/the-api-management-playbook.pdf
(accessed on Mar. 18, 2018).

Chow, Tsun and Dac-Buu Cao (2008). “A survey study of critical success factors in agile
software projects.” In: Journal of Systems and Software 81.6, pp. 961–971. DOI: 10.1016
/j.jss.2007.08.020. (Accessed on Mar. 20, 2018).

Collins, George and David Sisk (2015). API economy - From systems to business services.
Extract from "Tech Trends 2015" p. 23-33. Deloitte University Press. URL: https:
//www2.deloitte.com/content/dam/insights/us/articles/tech-

80

https://pages.apigee.com/rs/351-WXY-166/images/API-Best-Practices-ebook-2016-12.pdf
https://pages.apigee.com/rs/351-WXY-166/images/API-Best-Practices-ebook-2016-12.pdf
https://pages.apigee.com/ebook-State-of-APIs-reg.html
https://pages.apigee.com/ebook-State-of-APIs-reg.html
http://dx.doi.org/10.1007/978-3-319-38791-8_11
http://dx.doi.org/10.1007/978-3-319-38791-8_11
http://dx.doi.org/10.1145/1176617.1176622
http://dx.doi.org/10.1145/1176617.1176622
https://www.mckinsey.com/industries/financial-services/our-insights/data-sharing-and-open-banking
https://www.mckinsey.com/industries/financial-services/our-insights/data-sharing-and-open-banking
https://www.ca.com/content/dam/ca/us/files/ebook/the-api-management-playbook.pdf
https://www.ca.com/content/dam/ca/us/files/ebook/the-api-management-playbook.pdf
http://dx.doi.org/10.1016/j.jss.2007.08.020
http://dx.doi.org/10.1016/j.jss.2007.08.020
https://www2.deloitte.com/content/dam/insights/us/articles/tech-trends-2015-what-is-api-economy/Tech-Trends-2015-FINAL_3.25.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/tech-trends-2015-what-is-api-economy/Tech-Trends-2015-FINAL_3.25.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/tech-trends-2015-what-is-api-economy/Tech-Trends-2015-FINAL_3.25.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/tech-trends-2015-what-is-api-economy/Tech-Trends-2015-FINAL_3.25.pdf

trends-2015-what-is-api-economy/Tech-Trends-2015-FINAL_3.25
.pdf (accessed on Mar. 21, 2018).

Cooper, Robert G. and Elko J. Kleinschmidt (1995). “Benchmarking the Firm’s Critical
Success Factors in New Product Development.” In: Journal of Product Innovation
Management 12.5, pp. 374–391. DOI: 10.1111/1540-5885.1250374.

Daimler (2018). Mercedes Benz API Portal. URL: https://developer.mercedes-
benz.com/ (accessed on Sept. 24, 2018).

De, Brajesh (2017). API Management. Berkeley, CA: Apress. DOI: 10.1007/978-1-4842-
1305-6.

Earls, R. Alan (2013). Digging into quality: API best practices, problems and advice. Why use
new lifecycle tools in API management platforms? URL: https://searchmicros
ervices.techtarget.com/feature/Digging-into-quality-API-best-
practices-problems-and-advice (accessed on Aug. 24, 2018).

Evans, Peter C. and Rahul C. Basole (2016). “Revealing the API ecosystem and enterprise
strategy via visual analytics.” In: Communications of the ACM 59.2, pp. 26–28. DOI:
10.1145/2856447.

Fagerholm, Fabian and Jurgen Munch (2012). “Developer experience: Concept and defini-
tion.” In: IEEE, pp. 73–77. DOI: 10.1109/ICSSP.2012.6225984.

Fielding, Roy Thomas (2000). “Architectural Styles and the Design of Network-based
Software Architectures.” PhD thesis. University of California, Irvine.

Fischbach, Michael, Thomas Puschmann, and Rainer Alt (2013). “Service Lifecycle Man-
agement.” In: Business & Information Systems Engineering 5.1, pp. 45–49. DOI: 10.100
7/s12599-012-0241-5.

Fowler, Martin (2010). Richardson Maturity Model. Richardson Maturity Model. URL: http
s://martinfowler.com/articles/richardsonMaturityModel.html.

Fremantle, Paul, Jacek Kopecky, and Benjamin Aziz (2015). “Web API Management Meets
the Internet of Things.” In: DOI: 10.13140/rg.2.1.3133.5840.

Gemechu, Eskinder Demisse, Guido Sonnemann, Arne Remmen, Jeppe Frydendal, and
Allan Astrup Jensen (2015). “How to Implement Life Cycle Management in Business?”
In: Life Cycle Management. Ed. by Guido Sonnemann and Manuele Margni. Dordrecht:
Springer Netherlands, pp. 35–50. DOI: 10.1007/978-94-017-7221-1_4.

Giebel, M., H. Essmann, N. Du Preez, and R. Jochem (2009). “Improved innovation
through the integration of Quality Gates into the Enterprise and Product Lifecycle
Roadmaps.” In: CIRP Journal of Manufacturing Science and Technology 1.3, pp. 199–205.
DOI: 10.1016/j.cirpj.2008.10.004.

González, Francisco Javier Miranda and Tomás Manuel Bañegil Palacios (2002). “The effect
of new product development techniques on new product success in Spanish firms.”
In: Industrial Marketing Management 31.3, pp. 261–271. DOI: 10.1016/S0019-8501
(00)00150-4.

Google (2018). Apigee API Management. URL: https://apigee.com (accessed on Sept. 24,
2018).

81

https://www2.deloitte.com/content/dam/insights/us/articles/tech-trends-2015-what-is-api-economy/Tech-Trends-2015-FINAL_3.25.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/tech-trends-2015-what-is-api-economy/Tech-Trends-2015-FINAL_3.25.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/tech-trends-2015-what-is-api-economy/Tech-Trends-2015-FINAL_3.25.pdf
https://www2.deloitte.com/content/dam/insights/us/articles/tech-trends-2015-what-is-api-economy/Tech-Trends-2015-FINAL_3.25.pdf
http://dx.doi.org/10.1111/1540-5885.1250374
https://developer.mercedes-benz.com/
https://developer.mercedes-benz.com/
http://dx.doi.org/10.1007/978-1-4842-1305-6
http://dx.doi.org/10.1007/978-1-4842-1305-6
https://searchmicroservices.techtarget.com/feature/Digging-into-quality-API-best-practices-problems-and-advice
https://searchmicroservices.techtarget.com/feature/Digging-into-quality-API-best-practices-problems-and-advice
https://searchmicroservices.techtarget.com/feature/Digging-into-quality-API-best-practices-problems-and-advice
http://dx.doi.org/10.1145/2856447
http://dx.doi.org/10.1109/ICSSP.2012.6225984
http://dx.doi.org/10.1007/s12599-012-0241-5
http://dx.doi.org/10.1007/s12599-012-0241-5
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
http://dx.doi.org/10.13140/rg.2.1.3133.5840
http://dx.doi.org/10.1007/978-94-017-7221-1_4
http://dx.doi.org/10.1016/j.cirpj.2008.10.004
http://dx.doi.org/10.1016/S0019-8501(00)00150-4
http://dx.doi.org/10.1016/S0019-8501(00)00150-4
https://apigee.com

Haupt, Florian, Frank Leymann, and Karolina Vukojevic-Haupt (2017). “API governance
support through the structural analysis of REST APIs.” In: Computer Science - Research
and Development. DOI: 10.1007/s00450-017-0384-1.

Hevner, March, Park, and Ram (2004). “Design Science in Information Systems Research.”
In: MIS Quarterly 28.1, p. 75. DOI: 10.2307/25148625.

Holly, Kerrie et al. (2014). The Power of the API Economy business performance. IBM Redbooks.
URL: http://www.redbooks.ibm.com/redpapers/pdfs/redp5096.pdf
(accessed on Mar. 1, 2018).

Iyengar, Keerthi, Somesh Khanna, Srinivas Ramadath, and Daniel Stephens (2017). What
it really takes to capture the value of APIs. What it really takes to capture the value of
APIs. URL: https://www.mckinsey.com/business-functions/digital-
mckinsey/our-insights/what-it-really-takes-to-capture-the-
value-of-apis#0 (accessed on Mar. 21, 2018).

Iyer, Bala and Mohan Subramaniam (2015a). Are You Using APIs to Gain Competitive
Advantage? Are You Using APIs to Gain Competitive Advantage? URL: https://hbr.
org/2015/04/are-you-using-apis-to-gain-competitive-advantage
(accessed on Mar. 21, 2018).

Iyer, Bala and Mohan Subramaniam (2015b). The Strategic Value of APIs. The Strategic Value
of APIs. URL: https://hbr.org/2015/01/the-strategic-value-of-apis
(accessed on Mar. 21, 2018).

Jacobson, Daniel, Greg Brail, and Dan Woods (2011). APIs: A Strategy Guide. O’Reilly
Media, Inc.

Jayathilaka, Hiranya, Chandra Krintz, and Rich Wolski (2015). “EAGER: Deployment-
Time API Governance for Modern PaaS Clouds.” In: IEEE, pp. 275–278. DOI: 10.110
9/IC2E.2015.69.

Kepes, Ben (2014). Software may be eating the world but APIs are giving it teeth. Diversity
Limited. URL: http://www.diversity.net.nz/wp-content/uploads/2014
/04/REP-Software-will-Eat-101096-1.pdf (accessed on Mar. 21, 2018).

Kohlborn, Thomas, Axel Korthaus, and Michael Rosemann (2009). “Business and Software
Service Lifecycle Management.” In: IEEE, pp. 87–96. DOI: 10.1109/EDOC.2009.20.

Krintz, Chandra, Hiranya Jayathilaka, Stratos Dimopoulos, Alexander Pucher, Rich Wolski,
and Tevfik Bultan (2014). “Cloud Platform Support for API Governance.” In: IEEE,
pp. 615–618. DOI: 10.1109/IC2E.2014.90.

Leimeister, Jan Marco (2014). Collaboration Engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg. DOI: 10.1007/978-3-642-20891-1.

Levin, Guy (2016). An API-First Development Approach. An API-First Development Ap-
proach. URL: https://dzone.com/articles/an-api-first-development-
approach-1 (accessed on Aug. 24, 2018).

Lufthansa Group (2018). Lufthansa API Portal. URL: https://developer.lufthansa.
com (accessed on Sept. 24, 2018).

Macvean, Andrew, Martin Maly, and John Daughtry (2016). “API Design Reviews at
Scale.” In: CHI EA ’16 Proceedings of the 2016 CHI Conference Extended Abstracts on

82

http://dx.doi.org/10.1007/s00450-017-0384-1
http://dx.doi.org/10.2307/25148625
http://www.redbooks.ibm.com/redpapers/pdfs/redp5096.pdf
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/what-it-really-takes-to-capture-the-value-of-apis#0
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/what-it-really-takes-to-capture-the-value-of-apis#0
https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/what-it-really-takes-to-capture-the-value-of-apis#0
https://hbr.org/2015/04/are-you-using-apis-to-gain-competitive-advantage
https://hbr.org/2015/04/are-you-using-apis-to-gain-competitive-advantage
https://hbr.org/2015/01/the-strategic-value-of-apis
http://dx.doi.org/10.1109/IC2E.2015.69
http://dx.doi.org/10.1109/IC2E.2015.69
http://www.diversity.net.nz/wp-content/uploads/2014/04/REP-Software-will-Eat-101096-1.pdf
http://www.diversity.net.nz/wp-content/uploads/2014/04/REP-Software-will-Eat-101096-1.pdf
http://dx.doi.org/10.1109/EDOC.2009.20
http://dx.doi.org/10.1109/IC2E.2014.90
http://dx.doi.org/10.1007/978-3-642-20891-1
https://dzone.com/articles/an-api-first-development-approach-1
https://dzone.com/articles/an-api-first-development-approach-1
https://developer.lufthansa.com
https://developer.lufthansa.com

Human Factors in Computing Systems, pp. 849–858. URL: http://dl.acm.org/
ft_gateway.cfm?id=2851602&ftid=1716532&dwn=1&CFID=783074184
&CFTOKEN=67606185.

Malinverno, Paolo and Mark O’Neill (2016). Magic Quadrant for Full Life Cycle API Manage-
ment. Reprinted Report. Revised Version from Nov 30, 2016. Gartner.

Malinverno, Paolo and Mark O’Neill (2018). Magic Quadrant for Full Life Cycle API Man-
agement. Reprinted Report. Revised Version from 1 May, 2 018. Gartner. URL: https:
//www.gartner.com/doc/reprints?id=1-4Y21K37&ct=180501&st=sb.

Masse, Mark (2012). REST API Design Rulebook. 1st ed. Sebastopol: O’Reilly Media.

McBride, Gary (2017). The Role of SOA Quality Management in SOA Service Lifecycle Manage-
ment. URL: https://www.ibm.com/developerworks/rational/library/
mar07/mcbride/mcbride-pdf.pdf (accessed on Mar. 22, 2018).

Morgan, Jacob, Martin Gill, Randy Heffner, Alexander Causey, and Rachel Birell (2016).
Four Ways APIs Are Changing Banking - How Financial Services Firms Are Exploiting The
API Economy. Report. Forrester Research.

Mulesoft (2014). Secrets of a Great API - Core principles for delivering successful APIs. Whitepa-
per. Mulesoft. URL: https://www.mulesoft.com/lp/whitepaper/api/
secrets-great-api (accessed on Mar. 13, 2018).

Murphy, Lauren, Tosin Alliyu, Mary Beth Kery, Andrew Macvean, and Brad A. Myers
(2017). “Preliminary Analysis of REST API Style Guidelines.” In:

Myers, Brad A. and Jeffrey Stylos (2016). “Improving API usability.” In: Communications of
the ACM 59.6, pp. 62–69. DOI: 10.1145/2896587.

Nasa (2018). Nasa API Portal. URL: https://api.nasa.gov/ (accessed on Sept. 24,
2018).

Newman, Sam (2015). Building Microservices. 1st. O’Reilly Media, Inc.

Nordic Apis (2016). The API Economy. URL: https://nordicapis.com/api-ebooks/
the-api-economy/ (accessed on Apr. 18, 2018).

Parsons, Rebecca et al. (2017). Technology Radar Vol. 17 - Insights into the technology and
trends shaping the future. Report 17. ThoughtWorks. URL: https://d1bss3tv0
zspu7.cloudfront.net/assets/technology-radar-vol-17-en.pdf
(accessed on Apr. 6, 2018).

Patni, Sanjay (2017). Pro RESTful APIs: design, build and integrate with REST, JSON, XML
and JAX-RS. 1st ed. DOI 10.1007/978-1-4842-2665-0. Santa Clara, CA: Apress. 136 pp.

Pollard, Carol E., Dhiraj Gupta, and John W. Satzinger (2009). “Integrating SDLC and
ITSM to ’Servitize’ Systems Development.” In: AMCIS 2009.

Postman (2017). 2017 Postman Community Report. URL: http://pages.getpostman.
com/rs/067-UMD-991/images/Postman-Survey-Results-Infographic.
pdf (accessed on Aug. 16, 2018).

Programmable Web (2018). Programmable Web. URL: https://www.programmableweb.
com/ (accessed on Sept. 24, 2018).

83

http://dl.acm.org/ft_gateway.cfm?id=2851602&ftid=1716532&dwn=1&CFID=783074184&CFTOKEN=67606185
http://dl.acm.org/ft_gateway.cfm?id=2851602&ftid=1716532&dwn=1&CFID=783074184&CFTOKEN=67606185
http://dl.acm.org/ft_gateway.cfm?id=2851602&ftid=1716532&dwn=1&CFID=783074184&CFTOKEN=67606185
https://www.gartner.com/doc/reprints?id=1-4Y21K37&ct=180501&st=sb
https://www.gartner.com/doc/reprints?id=1-4Y21K37&ct=180501&st=sb
https://www.ibm.com/developerworks/rational/library/mar07/mcbride/mcbride-pdf.pdf
https://www.ibm.com/developerworks/rational/library/mar07/mcbride/mcbride-pdf.pdf
https://www.mulesoft.com/lp/whitepaper/api/secrets-great-api
https://www.mulesoft.com/lp/whitepaper/api/secrets-great-api
http://dx.doi.org/10.1145/2896587
https://api.nasa.gov/
https://nordicapis.com/api-ebooks/the-api-economy/
https://nordicapis.com/api-ebooks/the-api-economy/
https://d1bss3tv0zspu7.cloudfront.net/assets/technology-radar-vol-17-en.pdf
https://d1bss3tv0zspu7.cloudfront.net/assets/technology-radar-vol-17-en.pdf
http://pages.getpostman.com/rs/067-UMD-991/images/Postman-Survey-Results-Infographic.pdf
http://pages.getpostman.com/rs/067-UMD-991/images/Postman-Survey-Results-Infographic.pdf
http://pages.getpostman.com/rs/067-UMD-991/images/Postman-Survey-Results-Infographic.pdf
https://www.programmableweb.com/
https://www.programmableweb.com/

Ravichandran, Aruna, Kieran Taylor, and Peter Waterhouse (2016). DevOps for Digital
Leaders. Berkeley, CA: Apress. DOI: 10.1007/978-1-4842-1842-6.

Rivero, José Matías, Sebastian Heil, Julián Grigera, Martin Gaedke, and Gustavo Rossi
(2013). “MockAPI: An Agile Approach Supporting API-first Web Application Devel-
opment.” In: Web Engineering. Ed. by Florian Daniel, Peter Dolog, and Qing Li. Red.
by David Hutchison et al. Vol. 7977. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 7–21. DOI: 10.1007/978-3-642-39200-9_4.

Rodríguez, Carlos, Marcos Baez, Florian Daniel, Fabio Casati, Juan Carlos Trabucco, Luigi
Canali, and Gianraffaele Percannella (2016). “REST APIs: A Large-Scale Analysis of
Compliance with Principles and Best Practices.” In: Web Engineering. Ed. by Alessan-
dro Bozzon, Philippe Cudre-Maroux, and Cesare Pautasso. Vol. 9671. Cham: Springer
International Publishing, pp. 21–39. DOI: 10.1007/978-3-319-38791-8_2.

Sandhu, Ravi S. (1998). “Role-based Access Control.” In: Advances in Computers. Vol. 46.
Elsevier, pp. 237–286. DOI: 10.1016/S0065-2458(08)60206-5.

Schepers, T. G. J., M. E. Iacob, and P. A. T. Van Eck (2008). “A lifecycle approach to SOA
governance.” In: ACM Press, p. 1055. DOI: 10.1145/1363686.1363932.

Smartbear (2018). Smartbear API Management. URL: https://smartbear.com/ (ac-
cessed on Sept. 24, 2018).

Smith, Tom (2018). DZone Research: API Management Issues. DZone Research: API Man-
agement Issues. URL: https://dzone.com/articles/dzone-research-api-
management-issues (accessed on Aug. 24, 2018).

Souza, Cleidson R. B. de, David Redmiles, Li-Te Cheng, David Millen, and John Patterson
(2004). “How a good software practice thwarts collaboration: the multiple roles of
APIs in software development.” In: ACM Press, p. 221. DOI: 10.1145/1029894.10
29925.

Spichale, Kai (2017). API-Design: Praxishandbuch für Java- und Webservice-Entwickler. Kor-
rigierter Nachdruck. OCLC: 1004312491. Heidelberg: dpunkt.verlag. 347 pp.

Stafford, Jan (2018). Why use new lifecycle tools in API management platforms? Why use new
lifecycle tools in API management platforms? URL: https://searchmicroser
vices.techtarget.com/feature/Why-use-new-lifecycle-tools-in-
API-management-platforms (accessed on Aug. 24, 2018).

Stählin, Johannes, Sebastian Lang, Fabian Kajzar, and Christian Zirpins (2018). “Consumer-
Driven API Testing with Performance Contracts.” In: Advances in Service-Oriented
and Cloud Computing. Ed. by Alexander Lazovik and Stefan Schulte. Vol. 707. Cham:
Springer International Publishing, pp. 135–143. DOI: 10.1007/978-3-319-72125
-5_11.

Tan, Wei, Yushun Fan, Ahmed Ghoneim, M. Anwar Hossain, and Schahram Dustdar
(2016). “From the Service-Oriented Architecture to the Web API Economy.” In: IEEE
Internet Computing 20.4, pp. 64–68. DOI: 10.1109/MIC.2016.74.

Tan, Wui-Gee, Aileen Cater-Steel, and Mark Toleman (2009). “Implementing IT Service
Management: A Case Study Focussing on Critical Success Factors.” In: Journal of
Computer Information Systems 50.2, pp. 1–12. DOI: 10.1080/08874417.2009.1164
5379.

84

http://dx.doi.org/10.1007/978-1-4842-1842-6
http://dx.doi.org/10.1007/978-3-642-39200-9_4
http://dx.doi.org/10.1007/978-3-319-38791-8_2
http://dx.doi.org/10.1016/S0065-2458(08)60206-5
http://dx.doi.org/10.1145/1363686.1363932
https://smartbear.com/
https://dzone.com/articles/dzone-research-api-management-issues
https://dzone.com/articles/dzone-research-api-management-issues
http://dx.doi.org/10.1145/1029894.1029925
http://dx.doi.org/10.1145/1029894.1029925
https://searchmicroservices.techtarget.com/feature/Why-use-new-lifecycle-tools-in-API-management-platforms
https://searchmicroservices.techtarget.com/feature/Why-use-new-lifecycle-tools-in-API-management-platforms
https://searchmicroservices.techtarget.com/feature/Why-use-new-lifecycle-tools-in-API-management-platforms
http://dx.doi.org/10.1007/978-3-319-72125-5_11
http://dx.doi.org/10.1007/978-3-319-72125-5_11
http://dx.doi.org/10.1109/MIC.2016.74
http://dx.doi.org/10.1080/08874417.2009.11645379
http://dx.doi.org/10.1080/08874417.2009.11645379

Tech Target (2018). How to smartly manage APIs through their full lifecycle.

The W. Edwards Deming Institute (2018). PDSA Cycle. URL: https://deming.org/
explore/p-d-s-a (accessed on Sept. 24, 2018).

Vasudevan, Keshav (2017). How Bonotel Improved Collaboration and Accelerated API Delivery
By Switching to SwaggerHub. SwaggerBlog. URL: https://swagger.io/blog/api-
strategy/switching-to-swaggerhub/ (accessed on Sept. 24, 2018).

Vester, John (2017). RESTful API Lifecycle Management. URL: https://dzone.com/sto
rage/assets/4960646-dzone-rc238-restfulapilifecyclemanagement.
pdf (accessed on Mar. 21, 2018).

Vukovic, Maja et al. (2016). “Riding and thriving on the API hype cycle.” In: Communica-
tions of the ACM 59.3, pp. 35–37. DOI: 10.1145/2816812.

W3C (2018). W3C Glossary. URL: https://www.w3.org/TR/ws-gloss/ (accessed on
Sept. 24, 2018).

Wähner, Kai (2014). API Management as a Game Changer for Cloud, Big Data and IoT: Product
Comparison and Evaluation. Voxxed. URL: https://www.voxxed.com/2014/1
2/api- management- game- changer- big- data- cloud- iot- product-
comparison-evaluation/ (accessed on Sept. 24, 2018).

Whitehead, Jim (2007). “Collaboration in Software Engineering: A Roadmap.” In: IEEE,
pp. 214–225. DOI: 10.1109/FOSE.2007.4.

Yin, Robert K. (2009). Case Study Research: Design and Methods (Applied Social Research
Methods). 4th ed. Sage Publications.

Zhang, Yajun, Jinlong Zhang, and Jiangtao Chen (2013). “Critical Success Factors in IT
Service Management Implementation: People, Process, and Technology Perspectives.”
In: IEEE, pp. 64–68. DOI: 10.1109/ICSS.2013.38.

85

https://deming.org/explore/p-d-s-a
https://deming.org/explore/p-d-s-a
https://swagger.io/blog/api-strategy/switching-to-swaggerhub/
https://swagger.io/blog/api-strategy/switching-to-swaggerhub/
https://dzone.com/storage/assets/4960646-dzone-rc238-restfulapilifecyclemanagement.pdf
https://dzone.com/storage/assets/4960646-dzone-rc238-restfulapilifecyclemanagement.pdf
https://dzone.com/storage/assets/4960646-dzone-rc238-restfulapilifecyclemanagement.pdf
http://dx.doi.org/10.1145/2816812
https://www.w3.org/TR/ws-gloss/
https://www.voxxed.com/2014/12/api-management-game-changer-big-data-cloud-iot-product-comparison-evaluation/
https://www.voxxed.com/2014/12/api-management-game-changer-big-data-cloud-iot-product-comparison-evaluation/
https://www.voxxed.com/2014/12/api-management-game-changer-big-data-cloud-iot-product-comparison-evaluation/
http://dx.doi.org/10.1109/FOSE.2007.4
http://dx.doi.org/10.1109/ICSS.2013.38

Appendices

A. Camunda

Camunda is a BPM tool which supports BPMN, CMMN and DMMN diagrams. A com-
bination of the three diagram types is also possible and provides flexibility. Camunda
was initially used for the automation approach, but later abandoned for this thesis, due
to limited time reasons. Further research might be helpful and could use the presented
results as basis.

A.1. BPMN

The BPMN diagram, shown in Figure A.1, depicts an initial version for using it in combi-
nation with the Camunda BPM tool. By using the Camunda Modeler1, it is possible to
connect code pieces to the diagram.

1https://camunda.com/products/modeler/

86

calm v0.6

Co
lla

bo
ra

tiv
e

AP
I L

ife
cy

cl
e

M
an

ag
em

en
t

AP
I B

us
in

es
s

O
w

ne
r

De
v

Te
am

En
tre

pr
is

e
Ar

ch
ite

ct
AP

I G
ov

er
na

nc
e

Co
m

m
ite

e
Pr

oc
es

s
Au

to
m

at
io

n
Se

rv
ic

e
AP

I C
on

su
m

er

New API or API
change request

API Specification
submitted?

View proposal

Generate Git
Update process

status to
DESIGN

Setup API Proxy

Setup Jenkins

Generate
documentation

API specification
submitted?

Validate
Specification

Update process
status to

DEV&TEST

Upload
Specification

Submit SLA
requirements

Funding and
Proposal

approved?

Send rejection
message

Archive proposal

Generate
Decision Report

Approve
proposal

Approve funding

Choose
proposal

Generate Pre-
Decision Report

Set domain
details for
proposal

Submit proposal

Validate API
specification

Validation ok?

Update process
status to

ANALYSIS

Yes

Yes

No

No

No

Yes

No

Yes

Figure A.1.: A BPMN approach for the prototype to support the Collaborative API LIfecycle Management

87

A.2. CMMN

The BPMN diagram does not provide flexibility. To overcome this hurdle, a CMMN was
subsequently modeled. This CMMN diagram, depicted in Figure A.2, needs to be further
extended. Automated work flows could be modeled with BPMN and combined with this
CMMN diagram.

Figure A.2.: A BPMN approach for the prototype to support the Collaborative API Lifecy-
cle Management

88

B. Evaluation Questionnaire

The evaluation was conducted with the following evaluation script. The evaluation script
consists of two scenarios with several tasks. After each task the interviewees are asked to
rate their perception of the prototype with the help of the SUS questionnaire. After both
scenarios, the evaluation ends with four open qualitative questions.

89

Date: Time: ID:

1 / 7

Evaluation – CALM Web App

Introduction

Given is a prototype in form of a web application from an European insurance company which lead
people through the collaborative API Lifecycle Management process.

In the following, you are given one or two scenarios that require you to use the web application
prototype to fullfill several tasks. After finishing all tasks, you are given a questionnaire that needs to
be filled out by you.

Finally, there are a few open questions that the interviewer would like to ask you. Feel free to answer
the questions with any opinion you might have.

Important Terms

Please ask the interviewer for clarification, if you do not understand the following terms:

• Web API
• API Specification

Interviewee:

Job Title:

Years active in the current role:

Current Core Area:

Software Development Experience:

Date: Time: ID:

2 / 7

Evaluation Scenario 1 (API Consumer | Proposal Submission)

You are a financial technology startup, named Ency, who would like to have an API from the European
insurance company, so that you can use that API to offer and sell health insurance products from
them.

The following tasks cover your activities to get your wished API.

Task 1: Search for an existing suitable API proposal.

Your purpose is to get an API that enables you to sell specifically health insurance products. Your first
impression is to search for an API proposal that already does, what you are looking for.

Firstly, get familiar with the User Interface. After that, look for an API proposal that also wants to sell
specifically health insurance products. In case, you have found one, you would leave a note to that
proposal that you are looking forward to use it too.

Task 2: Propose a new API.

In case, you have not found an existing suitable API proposal, your next intuition will be that you need
to submit a new API proposal for your purpose of selling health insurance products.

Start to create a new proposal with the following details and submit it:

You are from the financial technology startup Ency. You want to have a Health Insurance Products
API which sells health insurance products from the European insurance company. Your API proposal
belongs to the Insurance category and has keywords like Products, Health and Health Insurance. The
timeline for this API program should be from 01/10/2018 until 01/04/2019. For your API, you are willing
to pay 3€ per request.

Task 3: Improve your proposal by uploading some mock-up files.

Your proposal needs more details from your side. That is why, you are trying to provide more
information, so that the reviewers can understand your purpose of your API better.

Look for your submitted proposal and upload the following mock-up file:
-> Mock-up file: “mockups_api_ency.pdf”

Task 4: Add some SLA requirements.

Additionally, you want to have certain standards for your new API to be fullfilled.

For that, you want to add the following two SLA requirements:
A) Availability of 99%
B) Uptime of 99%

Task 5: Upload your API specification and save your changes.

You already have a first idea, how the API could look like and what endpoints it should provide. For
that, you created a first draft of an API specification for the new API and you want to attach it to the
proposal.

Look for your proposal, upload the API specification and make necessary changes to save your
updated API proposal.
-> API specification name: “api-spec_ency.yaml” or “api-spec_ency.json”

Task 6: Vote for your API.

Lastly, vote for your own API, so that it gets higher attention by the reviewers.

– Evaluation Scenario 1 done –

Date: Time: ID:

3 / 7

Evaluation Questionnaire – Scenario 1

 Strongly Strongly
 disagree agree

1. I think that I would like to
 use this system frequently

2. I found the system unnecessarily
 complex

3. I thought the system was easy
 to use

4. I think that I would need the
 support of a technical person to
 be able to use this system

5. I found the various functions in
 this system were well integrated

6. I thought there was too much
 inconsistency in this system

7. I would imagine that most people
 would learn to use this system
 very quickly

8. I found the system very
 cumbersome to use

9. I felt very confident using the
 system

10. I needed to learn a lot of
 things before I could get going
 with this system

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Date: Time: ID:

4 / 7

Evaluation Scenario 2 (API Provider | Review Proposals)

You are an enterprise architect with an insurance domain. You are in charge of screening proposals
which are from the same domain as your own. In case of accepting an API proposal, the project will be
automatically prepared for development.

The following tasks cover your activities for reviewing proposals and getting an automatic development
setup.

Task 1: Search for all proposals with an insurance category that do not fullfill the given criteria
and reject them.

Your task is to assess, if a proposal fullfills certain criteria to be accepted. For that, you need to screen
all proposals that are on your review list and make a decision if the proposals fullfill certain
requirements.

Screen through all proposals that need to be reviewed and reject all proposals that do not fullfill the
following requirement:

-> above 2€ per request

Task 2: Approve the proposal with the highest votes.

Proposals with high votes attract your attention, because you know that other people are also
interested in that API.

Look for the proposal from your domain with the highest votes. The proposal with the highest votes
fullfills all basic requirements. That is why you will approve it.

Task 3: Check out the generated project in github and prepare the API proposal for
development.

By approving a proposal, the project will be automatically set up and you need to prepare to hand the
proposal over for development.

Look for the approved proposal with the highest votes. Go to the repository and have a look at the
code.

View the proposals’ API documentation. Before you can do that, you need to initially enable it. The
following instructions need to be executed, in order to enable the live documentation:

A) Go to the repository and click on the tab Settings.

– Please turn to next page –

Date: Time: ID:

5 / 7

B) Scroll down and look for the Github Pages section. Set the Source to master branch /docs folder
and finally, click on the button Save.

C) Scroll down and look again for the Github Pages section. Click on the button Choose a theme.
Choose for example Slate as documentation theme and click on the button Select theme.

D) Return to the web application prototype and have a look at the documentation for that proposal.

– Evaluation Scenario 2 done –

Date: Time: ID:

6 / 7

Evaluation Questionnaire – Scenario 2

 Strongly Strongly
 disagree agree

1. I think that I would like to
 use this system frequently

2. I found the system unnecessarily
 complex

3. I thought the system was easy
 to use

4. I think that I would need the
 support of a technical person to
 be able to use this system

5. I found the various functions in
 this system were well integrated

6. I thought there was too much
 inconsistency in this system

7. I would imagine that most people
 would learn to use this system
 very quickly

8. I found the system very
 cumbersome to use

9. I felt very confident using the
 system

10. I needed to learn a lot of
 things before I could get going
 with this system

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Date: Time: ID:

7 / 7

General Questions

1. Do you think the given web application could help to accelerate the API Lifecycle Management
process? Explain why?

Answer:

2. Do you think the given web application facilitates the collaboration between all participating
stakeholders? Explain why?

Answer:

3. Do you see any limitations or problems about the web application?

Answer:

4. Finally, what did you like about the web application?

Answer:

	Cover
	Title
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Approach
	1.5 Outline of this Thesis

	2 Foundations
	2.1 API Fundamentals
	2.2 API Economy
	2.2.1 Key Terms
	2.2.2 API Value Chain
	2.2.3 API Types

	2.3 API Lifecycle Management
	2.3.1 Key Terms
	2.3.2 API First Design
	2.3.3 Comparison of Similar Lifecycle Approaches

	2.4 Collaboration Engineering
	2.4.1 Key Terms
	2.4.2 Tool Classification

	3 Related Work
	4 Conceptual Design
	4.1 API Lifecycle Requirements
	4.1.1 Challenges from the Industry Partner
	4.1.2 Success Factors as Requirements

	4.2 API Lifecycle Model
	4.2.1 Overview
	4.2.2 Layers
	4.2.3 Roles
	4.2.4 Artifacts
	4.2.5 Activities

	4.3 Collaboration Features
	4.4 System Design
	4.4.1 Use Case Diagram
	4.4.2 State Machine Diagram
	4.4.3 RBAC Model
	4.4.4 Data Model Diagram

	5 Prototypical Implementation
	5.1 Architecture
	5.2 Technological Foundations
	5.3 Web Frontend
	5.3.1 Overview
	5.3.2 Major Views

	5.4 Backend

	6 Evaluation
	6.1 Expert Interview Setting
	6.2 Interview Results
	6.2.1 System Usability Scale
	6.2.2 Open Qualitative Questions

	6.3 Concerns and Possible Enhancements of the Solution Design
	6.3.1 General Technical and Conceptual Feedback
	6.3.2 Feedback for the Home View
	6.3.3 Feedback for the Proposal Creation View
	6.3.4 Feedback for the Proposal Overview View
	6.3.5 Feedback for the Proposal Details View

	6.4 Synthesis of Evaluation Results

	7 Conclusion
	7.1 Summary
	7.2 Limitations
	7.3 Future Work

	Bibliography
	Appendices
	A Camunda
	A.1 BPMN
	A.2 CMMN

	B Evaluation Questionnaire

